Search published articles


Showing 2 results for Simulation-Optimization Model

M. Akbari,
Volume 24, Issue 4 (2-2021)
Abstract

The objective of this research was the development of a hydraulic-economic simulation-optimization model for the design of basin irrigation. This model performed hydraulic simulation (design of basin irrigation), using Volume Balance model, economic simulation through calculating sum of four seasonal costs and optimization using NSGAII multi-objective meta-heuristic algorithm. For programming, MATLAB programming software was applied. The optimizations of functional, multi-dimensional, static, constraint, continuous, multi-objective and meta-heuristic were applied for the optimization of the objective functions. Decision variables selected from simulation inputs were calculated in such a way that the  hydraulic objective function (minimizing linear combination of seven performance indicators) and economic objective function (total seasonal cost based on sum of water cost, labor cost, basin preparing cost and channel drilling cost) were minimized. Data of one the experimental field was used for the purpose of simulation. After initial simulation, optimization of the experimental field was done using NSGAII multi-objective meta-heuristic algorithm with tuned parameters. Optimization using the suggested model shoed the decrease (improvement) of objective functions rather than initial simulation performance. As a result, the suggested model could be regarded as is a specialized tool for basin irrigation, showing a good performance, despite its simplicity.

M. Ghodspour, M. Sarai Tabrizi, A. Saremi, H. Kardan Moghadam, M. Akbari,
Volume 25, Issue 3 (12-2021)
Abstract

The application of simulation-optimization models is a valuable tool for selecting the appropriate cropping pattern. The main objective of this research is to develop a two-objective simulation-optimization model to determine the pattern of cultivation and water allocation. The model performs the optimization with the multi-objective metamorphic algorithm (MOALO) after simulating different states of the cultivation pattern. The decision variables including land and water allocated to ten-day periods of plant growth were designed in a way that the minimum utilization of water resources and economic maximization were identified as target functions. The developed model was used to simulate and optimize the cultivation pattern with an area of ​​5500 hectares and water allocation of Semnan plain with renewable water at the rate of 60.8 million cubic meters. Harvesting scenarios of 80 (GW80) and 100 (GW100) percent of renewable groundwater and scenarios of change in existing cropping pattern of 30 (AC30) and 60 (AC60) percent were considered and each scenario was simulated with the MOALO algorithm. Optimization using the proposed model in four scenarios improved the water and economic objective functions compared to the initial simulation performance. The results showed that the four proposed scenarios were obtained by minimizing the water objective function and maximizing the economic objective function relative to the current situation (simulation). In general, the proposed model had a good performance despite its simplicity, which is a specialized tool to optimize the crop pattern with water allocation.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb