Search published articles


Showing 15 results for Soil Erosion

Kh. Jalili, S. H. R. Sadeghi, D. Nikkami,
Volume 10, Issue 4 (1-2007)
Abstract

Improper management of watershed land utilization has many ill effects on the available resources. Land use optimization is one of the proper strategies to achieve sustainable development and to reduce resource dissipation. Focusing on Brimvand watershed in Kermanshah province which comprises an area of 9572 ha, the present study was conducted to find out the most suitable land allocation to different land uses viz. garden, irrigated farming, dry farming and rangeland to achieve soil erosion minimization and benefit maximization. The soil erosion, net benefit and standard land capability maps were supposed as the inputs of the objective functions and to defined constraints. The multi-objective linear problem was then solved using simplex method with the help of ADBASE software package and ultimately the optimal solution was gained. Additionally, the results of the study revealed that the amount of soil erosion could reduce by 7.78% whereas the benefit increases at the rate of 118.62%, in case of implementation of optimal solution. The above mentioned optimization led to dry farming decrease and garden increase over that area. The results of sensitivity analysis also showed that objective functions were strongly susceptible to the variation of maximum constraint of irrigated farming and garden areas.
A. Jalalian, M. Amirpour Robat, B. Ghorbani, S.h. Ayoubi,
Volume 11, Issue 42 (1-2008)
Abstract

  Soil erosion is one of the most threatening issues for crop production and environmental qualities, especially for soil and water resources. Appropriate knowledge about total soil loss and runoff is valuable in order to perform soil and water conservation practices in watersheds. EUROSEM, "a single event, dynamic and distributed model," was developed to simulate soil loss, sediment transportation and deposition by rill and interrill processes. This study was conducted to evaluate EUROSEM model in order to simulate soil loss and runoff in Sulijan sub-basin, which covered 20 ha, from Charmah-Bakhtari province. The sub-basin was divided in to 19 homogeneous elements using topographic, land use, plant cover, slope and channel properties throughout it. Soil, plant cover, land surface and climate characteristics were measured and evaluated by field observations and laboratory measurements. Actual soil loss and runoff for studied events were determined by direct measurement in the field. After sensitivity analysis, calibration and validation steps were carried out to simulate runoff and soil loss. The results of sensitivity analysis showed that the EUROSEM model for predicting runoff was more sensitive to hydraulic conductivity, capillary drive and initial soil moisture. On the other hand the model for predicting soil loss was more sensitive to Manning's coefficient and soil cohesion. The results showed that the EUROSEM model was able to simulate well the total runoff, peak of runoff discharge, total soil loss and time for the peak of soil loss discharge. But that could not simulate well the peak of soil loss discharge and time for the peak of runoff. Although it seems that EUROSEM is able to predict soil loss and runoff partially well in individual events, it is necessary to evaluate the efficiency of the models for different basins with varieties of soil, plant cover and climatic properties.


S.h Sadeghi, S.h Pourghasemi, M Mohamadi, H Agharazi,
Volume 12, Issue 46 (1-2009)
Abstract

The use of suitable empirical models for estimation of soil erosion and sediment yield is essential because of nonexistence or shortage of associated data in many watersheds. In the present study, the applicability of the USLE and its different versions Viz. MUSLE-S, AOF, MUSLT, MUSLE-E, USLE-M and AUSLE in estimation of storm-wise sediment yield from standard plots installed in dry farming, ploughed and rangeland treatments was evaluated. To conduct the study, the entire input data were collected from plots installed in three replicates in each treatment in Khosbijan Natural Resources Research Station in Arak Township. The models’ estimates were then compared with the observed sediment data for 12 storm events. Contrary to high correlation among different models’ estimates, the models used in estimation of measured sediment data were found inapplicable. However, significant relationship (r=94.4%) and non-significant relationship with correlation coefficients less than 50% were found between MUSLE-E, and MUSLE-S and MUSLE-E estimates and measured data in rangeland, dry farming and ploughed treatments, respectively.
M Bashiri Seghale, S.h.r Sadeghi, A.s Rangavar ,
Volume 14, Issue 52 (7-2010)
Abstract

Erosion plots are basically used for studying erosion processes and many related problems. However, the possibility to extend the results of experimental plots to surrounding watersheds is rarely taken into account. In the present study, an attempt was made to study on the accuracy of soil erosion plots in estimation of runoff and sediment yield from small watersheds. Towards this attempt, 12 experimental plots with length of 2, 5, 10, 15, 20 and 25 meter were installed on two north and south facing slopes in Sanganeh watershed, northeastern Razavi Khorasan Province with an area of ca. 1 ha. The performance of the plots in estimation of runoff and sediment was controlled by data collected at the main outlet associated with 12 storm events occurred during November 2006 to June 2007. The results showed that the accuracy of plot estimates on sediment and runoff improved while the plot length increased. The optimal length for estimation of sediment and runoff parameters was found to be equal to average slope length and more than 20m.
Hamzeh Saeidian, Hamid Reza Moradi,
Volume 17, Issue 64 (9-2013)
Abstract

The type and intensity of soil erosion in a region generally depend on climatic conditions, ups and downs, soil and land use. Of these, land use is most important. Using different systems of ploughing after unconscious and non-scientific change of land use affects soil physicochemical characteristics. This fact especially in marginal lands and mountainous regions is more visible. In order to investigate sensitivity to soil loss and erosion in various land uses of Aghajary deposits, part of Margha catchment with an area of 1609 hectares in Izeh city was selected. This was to determine the relationship between soil loss by rain simulator and some soil physicochemical characteristics like percentage of very fine sand, sand, clay, silt, pH, Ec, moisture, Calcium Carbonate and organic materials in different land uses. Then, sediment sampling in 7 points, three replicates and in various intensities of 0.75, 1 and 1.25 millimeters in minute in range, residential and agricultural land uses was done using rain simulator. In order to investigate effective factors in sediment production and erosion, samples of soil layers (in depth range of 0-20 cm meters) equal to the number of sediments were taken. For statistical analysis, EXCEL and SPSS 11.5 software were used. In total, the amount of runoff in residential land use was highest and in agriculture land use was lowest. The amount of sediment in agriculture land use was highest and in residential land use was lowest. Then, the most important factors in sediment yield were diagnosed by multi regression. The results showed that sediment yield and erodibility in land uses have meaningful differences in various intensities of precipitation. Regression models showed that in the production of sediment in various land uses, from among the measured factors, silt, sand very fine, lime, Ec, organic materials and pH had the greatest role. Sand percentage in the residential land use, and very fine sand and organic matter in agriculture land use had the most important role in sediment production. But in range land use, moisture percentage and pH had the biggest role in sediment production.
A. R. Vaezi, H. Hasanzadeh,
Volume 20, Issue 75 (5-2016)
Abstract

Knowledge of variation in soil properties from each event to another is very important for the determination of critical periods during which soil is susceptible to erosion processes. This study was carried out to investigate soil loss in sequential rainfall events in Zanjan Province. Toward this, ten soil textures samples were taken and were transported to small plots (60 cm×80cm) with 20-cm depth) on a 8% slope land at three replications. The plots were exposed to ten simulated rainfalls with an intensity of 55 mm h-1 for 30-min and 5-day intervals. A total of 300 simulated rainfall trials were carried out at the plots.  Results indicated that soil moisture, runoff production and soil loss were significantly affected by rainfall events (P< 0.001). Increasing soil moisture and consequently decreasing soil infiltration capacity were the most crucial element in increasing runoff production and soil loss in the sequential rainfall events, in a way that about 84% of soil loss variation in the rainfall events could be explained based on antecedent soil moisture. After the fifths rainfall event, no significant differences  was found in soil infiltration capacity as well as runoff production because of soil moisture reaching to the water-holding capacity. Nevertheless, an increasing trend was observed in soil loss after fifth event which could associate with presence of more erodible soil particles on the surface and consequently increasing the concentration of surface flows.


H. Asadi, M. Aligoli, M. Gorji,
Volume 20, Issue 78 (1-2017)
Abstract

This study aimed to investigate the dynamic changes of rill erosion and evaluate the ability of Hairsine-Rose model in estimation of sediment concentration. The experiments were carried out at the Soil and Water Conservation Research Station of Tehran University in Kuhin, Qazvin. Four flow rates were tested at three slopes in trapezoidal hand-made rills of 3 m long and 5 cm base width. Outflows were sampled periodically to determine changes in sediment concentration. The experiments were repeated in early autumn and mid spring. Sediment concentration showed a dynamic change with time which was affected by flow rate, slope and season. The sediment concentration was high in the first few minutes of the experiment but over time, dropped and finally reached a more or less stable state. The effects of flow rate and slope were more detectable on sediment concentration at the early unsteady conditions than at the final steady conditions. Though the temporal trends were similar, the sediment concentration was generally higher in autumn than in spring. Hairsine-rose model showed a better performance at lower flow stream powers but generally over predicted sediment concentration showing a systematic error probably due to model formulation.


F. Jahanbakhshi, M. R. Ekhtesasi, A. Talebi, M. Piri,
Volume 22, Issue 2 (9-2018)
Abstract

One of the main sources of runoff in arid and semi-arid mountainous highlands is typically composed of before Quaternary formations. Since the structure and lithology of formations are different, varying formations can have different significance in terms of runoff and sediment. The present study aimed to investigate the sediment production potential and the runoff generation threshold on three formations (Shirkooh Granite, Shale, Sandstone and Conglomerate of Sangestan and Taft Limestone) in Shirkooh mountain slopes. The 60 mm/h rainfall intensity with the 40 minute continuity, according to region rainfall records, and the ability of the rainfall simulator were selected as the basis for the study. Field experiments were conducted in dry conditions based on one square meter plot on rocky slopes with a gradient of 20 to 22 percent and a maximum thickness of 30 cm of soil. The results showed that in 60 mm/h rainfall intensity, the minimum rainfall to produce runoff on Sangestan, Shirkooh and, Taft, was 10, 10.7 and 16.7 mm, respectively. The maximum amount of the sediment was measured on Sangestan, Taft and Shirkooh, respectively. Statistical tests related to runoff and sediment production on all three formations confirmed a significant difference at the 5 % level. In terms of the time required to start runoff, the minimum time was for Sangestan, Shirkooh and Taft, respectively. According to the results, in terms of the potential for runoff generation and sediment production, Sangestan, Shirkooh and Taft can be ranked from high to low levels.

N. Karimi, L. Gholami, A. Kavian,
Volume 23, Issue 3 (12-2019)
Abstract

The using of soil conditioners to water and soil conservation is essential and also, the effect study of soil moisture on the soil conservation process and its role on changing runoff, soil erosion and sediment yield is necessary for understanding and simulating the hydrologic response of soil. Therefore, the present study was carried with the aim of investigating the effect of biochar with amount of 1.6 t ha-1 on the components of  time to runoff, runoff volume, runoff coefficient, soil loss and sediment concentration in different soil moisture including air-dried, 15, 20 and 30 percent with three replications in plot scale. The results showed that after application of biochar conditioner, time to runoff compared with control treatment at soil moistures of air-dried of 15, 20 and 30 percent happened later 66.66, 186.6, 150.5, and 475.47 respectively. The results also showed that the runoff volume at soil moistures of air-dried of 15, 20 and 30 percent decreased 44.49, 55.65, 36.47 and 41.08 percent, respectively, and the runoff coefficient reduced 55.71, 66.39, 48.44 and 37.82 percent, respectively. The adding biochar caused the decreasing soil loss with rates of 91.19, 85.055, 85.63 and 88.066 percent, respectively, and the sediment concentration with amounts of 84.19, 66.53, 76.57 and 79.59 percent, respectively. Also the results showed that the changes of soil moisture had the significant effect on changing the time to runoff, runoff volume, and soil loss and sediment concentration in level of 99 percent.

N. Shahabinejad, M. Mahmoodabadi, A. Jalalian, E. Chavoshi,
Volume 24, Issue 3 (11-2020)
Abstract

Wind erosion is known as one of the most important land degradation aspects, particularly in arid and semi-arid regions. Soil properties, by affecting soil erodibility, can control the wind erosion rate. The aim of this study was to attribute the soil physical and chemical properties to the wind erosion rate for the purpose of determining the most important property. To this aim, wind erosion rates were measured in-situ at 60 points of Kerman province using a portable wind tunnel facility. The results indicated that wind erosion rates varied from 0.03 g m-2 min-1 to 3.41 g m-2 min-1. Threshold wind velocity decreased wind erosion rate following a power function (R2=0.81, P<0.001). Clay and silt particles, shear strength, mean weight diameter (MWD), surface gravel, dry stable aggregates (DSA<0.25mm), soil organic carbon (SOC), calcium carbonate equivalent (CCE) and the concentrations of the soluble Ca2+, K+ and Mg2+ were inversely proportional to the wind erosion rates following nonlinear functions. On the other hand, Wind erosion was significantly enhanced with increasing the sand fraction, soluble Na+, electrical conductivity (EC) and sodium adsorption ratio (SAR). According to the final results, among the studied soil properties, SAR and MWD were s the most effective properties controlling wind erosion in the soils of Kerman province. Therefore, it is recommended to consider suitable conservation practices in order to prevent the sodification and degradation of arid soils.

N. Hasanzadeh, L. Gholami, A. Khaledi Darvishan, H. Yonesi,
Volume 25, Issue 1 (5-2021)
Abstract

Soil erosion is one of the most serious environmental issues in the world, causing soil degradation, reduction of land productivity, increasing flood, water pollution and pollutions transportation; it is also a serious threat to sustainable development in the world. Therefore, the soil conservation and the prevention of soil erosion and use of conditioners as the nanoclay can be considered as a solution to improve   land productivity and protect environment. The present study was, therefore, conducted to address the effect of the application of montmorillonite nanoclay with three rates of 0.03, 0.06 and 0.09 t ha-1 on changing runoff and soil loss variables under laboratory conditions. The results showed that the nanoclay with the rate of 0.03 t ha-1 could decrease the runoff coefficient, soil loss and sediment concentration with the rate of 40.65, 88.38 and 82.19 percent, respectively. The average of soil loss in control treatment and conservation treatments of nanoclay with various rates was measured to be 3.76, 0.44, 1.33 and 3.16 g, respectively. Also, the results showed that the most sediment concentration was the control treatment with the rate of 5.84 g l-1 and the conservation treatments with nanoclay in the applied rates was 1.04, 3.47 and 2.96 g l-1, respectively. Also, the results showed that the nanoclay effect was significant on changing the soil loss and sediment concentration at the level of 99 percent. Finally, due to the effect, the use of this conditioner in natural conditions and investigation of the effects on environment and aggregates stability are recommended.

L. Gholami, A. Khaledi Darvisan, N. Karimi,
Volume 25, Issue 3 (12-2021)
Abstract

Soil loss can cause many intra-regional and extra-regional problems, on the other hand, the effect of soil moisture on processes of soil loss and sediment yield for the identification and simulation of soil hydrological response is necessary. Therefore, the application of soil conditioners is essential for soil and water conservation. The present study was conducted to investigate the effect of soil conditioners of vermicompost and nano-manure on variables of soil loss and sediment concentration at moistures of air-dried, 15 and 30%, and rainfall intensities of 50 and 90 mm h-1. The obtained results in addition to confirmation of the significant effect of each conservation treatment at the level of 99 percent on the intended components showed that the conservation treatment of vermicompost compared to nano-manure treatment had more effect on measured variables. Also, the conservation treatment of vermicompost could decrease the soil loss at soil moisture air-dried, 15, and 30 percent with rates of 72.15, 66.63, and 78.76 percent (50 mm h-1), respectively, and 45.01, 35.57, and 10.45 percent (of 90 mm h-1), respectively. The effect of conservation treatments, soil moistures, and rainfall intensity and the interaction effects of conservation treatments × rainfall intensity and rainfall intensity × soil moisture on changes of soil loss and sediment concentration were significant at the level of 99 percent. The application of vermicompost and nano-manure had acceptable results on studied parameters but the vermicompost effect was more than nano-manure. Therefore, due to the widespread use of different types of conditioners, nowadays, it is needed to move the application feasibility of conditioners such as vermicompost and nano-manure that these have not the adverse effects of environmental.

Mrs Soghra Bagheri, M.r. Ansari, A. Norouzi,
Volume 26, Issue 3 (12-2022)
Abstract

Soil erosion has been one of the most important problems of watersheds in the world and is considered one of the main obstacles to achieving sustainable development in agriculture and natural resources. Identifying and prioritizing regions sensitive to soil erosion is essential for water and soil conservation and natural resource management in watersheds. The present research was performed in 2021 year to prioritize the soil erosion susceptibility in 12 sub-watersheds of the Roudzard watershed in Khouzestan province using morphometric analysis and multiple criteria decision-making (MCDM) methods. In this regard, 11 morphometric parameters including shape parameters such as compactness constant (Cc), circularity ratio (Rc), form factor (Rf), elongation ratio (Re), linear parameters such as drainage density (Dd), stream frequency (Fs), drainage texture (Dt), bifurcation ratio (Rb), Basin length (L), Length of overland flow (Lg), and topographic parameter including Ruggedness number (Rn) were extracted and their relative weights were calculated using Analytic Hierarchy Process (AHP). The prioritization sub-watershed to soil erosion was performed using TOPSIS, VIKOR, and SAW methods, and the results were combined using rank mean, Copeland, and Borda methods. The final prioritization was compared with the amount of specific erosion in the MPSIAC model by determining Spearman's correlation coefficient. The result of the evaluation of morphometric parameters by using the AHP model showed that drainage density (0.161), drainage texture (0.158), and stream frequency (0.146) had the greatest effect on the erodability of the sub-watersheds. In contrast, the form factor (0.049), Elongation Ratio (0.036), and shape factor (0.026) had the least effects on erodability of the study area. In this research, the Spearman correlation coefficient between the final result of prioritizing the sub-watershed and the MPSIAC model was obtained as 0.8 in p-value<0.01. The results of prioritization of the sub-watersheds in terms of their sensitivity to soil erosion showed that sub-watersheds 11, 12, and 10 with an area of 191.83 km2 are categorized as very sensitive to soil erosion due to high value of linear parameters, low value of shape parameters, sensitive geology formation, and poor vegetation cover and located in rank 1 to 3, respectively. According to the results sub-watersheds 11, 12, and 10 have the highest amount of specific erosion equal to 16.03, 12.48, and 11.6 tons per hectare per year, respectively. Therefore, these sub-watersheds are a priority for watershed management operations. The results of the present study showed that MCDM methods and morphometric analysis are suitable tools for identifying areas sensitive to soil erosion and using the combined methods of the results and it is possible to take advantage of each of the different multi-criteria decision-making methods.

E. Javiz, A. Jalalian, M.r. Mosaddeghi, E. Chavoshi, N. Honarjoo,
Volume 26, Issue 4 (3-2023)
Abstract

One of the most significant environmental crises in arid, semi-arid, sub-humid, and even humid regions is the destructive phenomenon of desertification and in the arid and semi-arid regions is wind erosion. These problems exist in large areas of Iran and it is necessary to use an environmentally friendly and economic method to solve this problem. In this study, calcium bentonite clay was used for the first time in Iran and perhaps in the worlds in the critical region of Sajzi, which covers an area of 65 hectares. Experiments were performed on the crusts after one year of mulching with bentonite clay. The results showed that wind erosion has a negative and significant correlation with the mean weight diameter and geometric weight diameter of aggregate, aggregates with diameters greater than 0.25 mm, shear strength, and penetration resistance. On the other hand, the results of the permeability test using double-ring and by three models (Kostiakov, Horton, and Philip) showed that the lowest mean square error (SSE) and the highest coefficient of determination (R2) belonged to the Kostiakov model in the mulch-applied and control samples. This result indicated the superiority of the Kostiakov model compared to Horton and Philip's models. Wind erosion intensity was also measured in situ using a portable wind tunnel at 20 points in the Sajzi region. The findings showed that mulch application has controlled more than 95% of soil erosion.

D. Khatibi Roudbarsara, A. Khaledi Darvishan, J. Alavi,
Volume 27, Issue 2 (9-2023)
Abstract

Soil erosion followed by sediment production is the most important phenomenon that causes soil and environment degradation in many areas and is increasing. Sediment fingerprinting is a method to identify sediment sources and determine the contribution of each source to sediment production. The present research was carried out to evaluate the relative erosion sensitivity of lithological units and to determine the contribution of each unit in bed sediment production using geochemical properties in the Vaz River located in Mazandaran province. The 33 soil samples were taken from the whole watershed and one sediment sample at the outlet of the watershed. Then, five tracers of B, Al, Sc, Mo, and Sn were selected as the optimal combination using three statistical tests range tests, Kruskal-Wallis, and discriminant function analysis. Finally, using optimal tracers and a combined multivariate model, the contribution of lithological units with very high (A), high (B), medium to high (C), and medium (D) sensitivity in bed sediment production were obtained using FingerPro statistical package and R software. The results showed that the contribution of lithological units with very high (A), high (B), medium to high (C), and medium (D) sensitivity in bed sediment production were 24.23, 50.77, 15.62, and 9.36%, respectively. Then, the specific contribution of each sensitivity class was also calculated to remove the effect of area on the results. The Qal lithological unit including the Quaternary sediments in the river bed and banks with very high sensitivity to erosion (A) and a specific contribution of 0.0807 % per hectare had the maximum contribution in bed sediment production in Vaz River.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb