Search published articles


Showing 7 results for Soil Loss

A. Jalalian, M. Amirpour Robat, B. Ghorbani, S.h. Ayoubi,
Volume 11, Issue 42 (1-2008)
Abstract

  Soil erosion is one of the most threatening issues for crop production and environmental qualities, especially for soil and water resources. Appropriate knowledge about total soil loss and runoff is valuable in order to perform soil and water conservation practices in watersheds. EUROSEM, "a single event, dynamic and distributed model," was developed to simulate soil loss, sediment transportation and deposition by rill and interrill processes. This study was conducted to evaluate EUROSEM model in order to simulate soil loss and runoff in Sulijan sub-basin, which covered 20 ha, from Charmah-Bakhtari province. The sub-basin was divided in to 19 homogeneous elements using topographic, land use, plant cover, slope and channel properties throughout it. Soil, plant cover, land surface and climate characteristics were measured and evaluated by field observations and laboratory measurements. Actual soil loss and runoff for studied events were determined by direct measurement in the field. After sensitivity analysis, calibration and validation steps were carried out to simulate runoff and soil loss. The results of sensitivity analysis showed that the EUROSEM model for predicting runoff was more sensitive to hydraulic conductivity, capillary drive and initial soil moisture. On the other hand the model for predicting soil loss was more sensitive to Manning's coefficient and soil cohesion. The results showed that the EUROSEM model was able to simulate well the total runoff, peak of runoff discharge, total soil loss and time for the peak of soil loss discharge. But that could not simulate well the peak of soil loss discharge and time for the peak of runoff. Although it seems that EUROSEM is able to predict soil loss and runoff partially well in individual events, it is necessary to evaluate the efficiency of the models for different basins with varieties of soil, plant cover and climatic properties.


Engineer H. Talebikhiavi, Engineer M. Zabihi, Dr. R. Mostafazadeh,
Volume 21, Issue 2 (8-2017)
Abstract

Effective soil conservation requires a framework modelling that can evaluate erosion for different land-use scenarios. The USLE model was used to predict the reaction of appropriate land-cover/land-use scenarios in reducing sediment yield at the upland watershed of Yamchi Dam (474 km2), West Ardabil Province, Iran. Beside existing scenario, seven other land-use management scenarios were determined considering pattern of land-use through study area within a GIS-framework. Then, data inputs were prepared using terrain data, land-use map and direct observations. According to the model results, the generated erosion amount was 3.92 t/ha/yr for the current land-use (baseline scenario). For this purpose, conservation practices in dry farming slopes and implementing the scenario 5 (contour farming and remaining crop residuals) can reduce the sediment to 2.02 t/ha/yr. The lowest and highest decreases in sediment yield are projected to be through implementation of scenario 6 (irrigated farming protection with plant residuals) and 7 (biological soil conservation in dry and irrigated farming). The results indicated that, implementing scenario frameworks and evaluating appropriate land-use management scenarios can lead to the reduction of sediment entering the reservoir, and prioritizing soil conservations in the studied area.
 


A. Kavian , A. Alipour, K. Soleimani, L. Gholami,
Volume 23, Issue 1 (6-2019)
Abstract

Nowadays, acid rain serves as one of the most serious environmental problems has affected many regions in the world. This phenomenon is characterized by many environmental impacts, such as soil contamination and degradation. Acid rain immediately affects soil, causing soil particles to breakdown and be dispersed; this is the first step to initiate the soil erosion. Therefore, in this study, the effect of different pH levels of acid rain (at different levels) on the soil splash was investigated under laboratory conditions using a rain simulator and a cup splash. In the experiments, acid rains, with the pH values of 3.75, 4.25, 5.25 and normal rains at three intensities of 40, 60 and 80 mmh-1, were studied; finally, a number of 36 samples were taken for statistical analyses. SPSS 23 and EXCEL 2013 software and one way and two-way ANOVA were used for the statistical analysis at a confidence level of 95%. The results showed that at the intensities of 40 and 60 mmh-1, the splash rate was significantly different in all pH treatments, and the acid rain with pH of 3.75 showed the highest splash rate. However, no significant difference was found at the rain intensity of 80 mmh-1, despite the higher splash rate at the pH of 4.25 and 5.25 treatments. Also, the results of the comparison of the means showed that the soil splash rate was also increased with enhancing rain intensity. Finally, the two-way ANOVA test showed that the simultaneous interaction effects of the two factors of pH and rain intensity on soil splash was not significant.

L. Piri Moghadam, A. Vaezi,
Volume 23, Issue 4 (2-2020)
Abstract

Sloping farmlands are the major sources of soil, water and nutrient losses in arid and semi-arid regions. Information about the impacts of different tillage practices on soil erosion, nutrient loss and crop nutrient uptake on the sloping farmland of semi- arid soil is, however, limited. This study was carried out to investigate the effects of tillage direction on soil, water, nitrogen and phosphorous losses and their uptake by plant in a rainfed wheat land. Field experiments were conducted in two tillage directions: downslope tillage and contour line tillage with four fertilization treatments: control, urea, triple superphosphate, and urea + triple superphosphate at the field plots with 1.75 m ´ 8 m in dimensions by using the randomized completely block design at three replications in Zanjan Township during 2014-2015. According to the results, Significant differences were found between the two tillage practices in soil loss (P < 0.001), water loss (P < 0.001), nitrogen loss soil loss (P < 0.001), and nitrogen uptake by wheat grain (P < 0.001), while phosphorous loss and its uptake did not show any statistically significant difference. Soil and water loss in the downslope tilled plots was 1.65 and 2.50 times higher than the contour line tillage, respectively. Nitrogen loss in the downslope tilled plots was 1.29 times more than that in the contour line tilled plots. Nitrogen loss in the plots was attributed to soil and water loss, so significant relationships were observed between nitrogen loss and soil loss (R2 = 0.59)
and water loss (R2 = 0.55). This study, therefore, revealed that the tillage direction is an important factor controlling runoff, soil loss, and nitrogen loss and its uptake by wheat in the rainfed lands of semi-arid regions. Application of the contour tillage is, therefore, the first step to conserve soil and water and to improve soil productivity in these regions.

T. Yousefi Babadi, M. Lotfalianand, H. Akbari,
Volume 23, Issue 4 (12-2019)
Abstract

Soil erosion and its consequences are important factors in forest road network management. Cutslopes are the most important source of making sediment among different parts of the forest roads structure. For this research, a new and bare road in district No. 2, series No. 5 of NekaChoob forest, was selected; then the study data was measured. The study design was a completely randomized design in 10 plots with the size of 2 m2 along 500 meters of road with the 8 natural rainfall events. The results of the Pearson correlation showed that among soil properties, the contents of the liquid limit at the 5% confidence level and the plastic limit at the 1% confidence level had positive correlations with runoff and soil loss. Also, organic matter at the 1% confidence level and the contents of the sand at the 5% confidence level had negative correlations with runoff and soil loss. With increasing the soil moisture and bulk density, runoff and soil loss were enhanced. The results of the multivariate model showed that soil loss could be estimated using the Plastic Limit and sand percentage variables with a the correlation coefficient of 0.948.

A. R. Vaezi, Kh. Sahandi, N. Sadeghian,
Volume 24, Issue 2 (7-2020)
Abstract

In semi-arid regions, soils are weakly aggregated and subjected to water erosion processes especially rill and interrill erosion. There is no information on the rate of these water erosion types in semi-arid soils located in the hillslopes. Therefore, this study was conducted to determine the soils susceptibility to these erosion types in semi-arid region. A laboratory experiment was done in eight soil textures using in a 0.6 m × 1 m flume a simulated rainfall with 50 mm.h-1 in intensity for 60 min. Rill and interrill erosion rate was measured using soil loss amount per flume area and rainfall duration. Based on the results, both rill and interrill erosion rate were significantly varied among the soils textures (P<0.001). Silt loam was the most susceptible soil to rill erosion (0.22 g m-2 sec-1) and interrill erosion (0.15 g m-2 sec-1), whereas sand didn’t appear any soil loss by these water erosion types. The compression of soil loss resulted by rill and interrill erosion among the soil tectures showed that rill erosion rate for sandy clay loam, silt loam, loam and sandy loam was 3.2, 1.4, 1.1 and 2.8 times higher than interrill erosion rate, respectively. These differences were statistically significant. Silt content was the major factor controlling soil loss difference in these soils. This study revealed that the study semi-arid soils having higher silt content appears also higher rill erosion rate than interrill erosion rate.

A. Motamedi, M. Galoie,
Volume 25, Issue 2 (9-2021)
Abstract

The annual soil erosion in different regions of the world has been estimated using various empirical and numerical methods whose accuracy is very dependent on their utilized parameters. One of the most common methods in the evaluation of the mean annual soil erosion especially in sheet and furrow regions is the USLE method. In this relationship, almost all factors that normally affect the soil loss process such as land cover, slope, precipitation, soil type, and support practice parameter of soil have been employed but, in this research, it was shown that the accuracy of this method in mountainous areas covered by rock and snow is somewhat low. To do this, a part of the Tibet plateau in China, where observation soil loss data were available, was selected for investigation. To implement the numerical and analytical analysis, many maps including DEM, NDVI, orientation, soil type, mean monthly and annual precipitation for 30 years were collected. For increasing the accuracy of the model, the cover management parameter was extracted from high accuracy NDVI maps and all USLE parameters were calculated in ArcGIS. The final results were shown that the amount of annual soil loss which was estimated by the USLE method is more than the observed data which were collected by Chinese researchers. This is because the large areas of the study area are covered by lichen and snow where soil loss due to the erosion process is very low but these regions cannot be recognized from NDVI maps. Also, the analysis of the NDVI maps was shown that the relationships of Fu, Patil, and Sharma were not suitable for soil loss estimation in elevated mountainous areas. If the other relationships such as Lin, Zhu, and Durigon are used for the regions with a height of more than 5500 m, a new correction coefficient needs to be used for the C factor which was calculated as 0.2 for the study area.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb