Showing 15 results for Soil Ph
H. Naghavi, M. A. Hajabbasi, M. Afyuni,
Volume 9, Issue 3 (10-2005)
Abstract
The objective of this study was to evaluate effects of cow manure on soil hydraulic properties and bromide leaching in a sandy loam soil (coarse loamy mixed, Typic Torrifluvents). Manure was applied at 0, 30, and 60 tha-1 at three replications in a completely random design. Three months after manure application potassium bromide (KBr) at rate of 300 Kg ha-1 Br was uniformly applied on the surface. Soil bulk density, porosity, organic matter, and soil moisture at18 levels of matric potentials were determined. Soil samples to the depth of 105 cm at 15-cm increments were collected after 100, 200 and 400 mm of irrigation. Soil bulk density, porosity, organic matter content, and soil moisture at different levels of matric potential increased significantly with manure application. Manure application also significantly affected the hydraulic parameters. Bromide leaching was significantly lower in plots with manure application and the greatest leaching occurred at the zero manure application treatment. The center of mass evaluation indicated a relatively similar result with measured values.
A. Jafari, H. Shariatmadari, H. Khademi, Y. Rezainejad,
Volume 12, Issue 44 (7-2008)
Abstract
Mineralogy is one of the most influential soil properties that change from upper- to lower slope positions, depending on the climate differences. Such changes affect soil properties such as phosphorus sorption and desorption processes differently. Therefore, this study was carried out to investigate the clay mineralogy of soils in four toposequences from arid (Isfahan) and semiarid (Chaharmahal Bakhtiari) regions and its effect on soil P release. The soils of three points on each toposequence were sampled as the upper-slope mainly containing parent materials the mid-slope, non-arable lands and the lower-slope, arable lands. Some of soil properties such as clay minerals were determined. Also, trend of P release parameters was studied in four toposequences. Results showed that the amount of clay, cation exchange capacity (CEC), electrical conductivity (EC), and pH of the soils increase down the slope in all toposequences. X-ray diffractograms showed that kaolinite and illite in upper slope and smectite and chlorite in lower slope were the predominant clays. Among the kinetic models examined based on their determination coefficient and standard error, the Elovich equation was chosen to describe the P release kinetics in studied soils. The trend of P desorption rate along the arid toposequences was in the following order: upper-slope < mid-slope < lower-slope. Furthermore, the rate of P desorption in soils of the semiarid toposequences was higher than arid toposequences. Regarding the trend of P rate parameters along the toposequences, it could be concluded that P release rate and the soil capacity to supply P for plants increase toward lower slope.
A. Heydari,
Volume 15, Issue 57 (10-2011)
Abstract
Performance of proper deep tillage can reduce negative effects of soil compaction. The objectives of the research were to determine the effects of deep tillage application on soil physical properties and wheat yield. Therefore, in 2006-2007 an experiment was conducted at Tajarak Agricultural Research Station of Hamedan on a soil with clay loam texture. In this research, four tillage methods were used. These methods were: 1) subsoiling with 30cm soil depth + conventional tillage (moldboard plowing) 2) subsoiling with 50cm soil depth + conventional tillage, 3) plowing by combined plow (chisel plow + roller) with 30cm soil depth and 4) conventional tillage (plowing by moldboard plow to 25-30cm soil depth). Randomized complete block design with four treatments and replications was used to analyze data and compare the treatment means. Before and after the application of the tillage treatments, parameters of cone index, bulk density and infiltration rate were measured in soil. Also before yield harvesting, components of yield (grain number in panicle, panicle number in plant and 1000 grain weight) were measured. To measure grain yield in experimental plots, in each plot ten square meter area from the yield was harvested. Result indicated that effect of different tillage treatment on soil resistance was not significant. Effect of deep tillage methods on bulk density and infiltration rate was significant. Deep tillage methods increased water infiltration rate in the soil and decreased soil bulk density. Effect of different deep tillage methods on wheat yield was not significant. However, application of chisel plow increased the wheat yield by 25%. It may be concluded the subsoiling treatment does not affect the crop yield in intensive and fully irrigated field condition. The results of this study indicated that if there is a compacted layer at 30cm soil depth, and with the same climate and soil as those in the experimental site, the application of chisel plow due to economical consideration (low fuel consumption and high field efficiency) can be recommended for soil preparation and cultivation of irrigated wheat.
K. Kamali, M. Mahdian2, M. Arabkhedri1, A. Charkhabi1, N. Ghiasi1 and A. M. Mahdian, M. Arabkhedri, A. Charkhabi, N. Ghiasi, A. Sarreshtehdari,
Volume 15, Issue 57 (10-2011)
Abstract
Floodwater Spreading (FS) plays an effective role in improving soil fertility, ground water recharge, vegetation cover, and desertification control. The soil fertility might increase as a result of a suitable suspended sediment material transferred to the downstream by flood events. To define a relevant FS method which increases the efficiency of the FS projects, it is necessary to study the quality and quantity of transported sediment material, spatially and temporarily. In this research, this subject was investigated by taking soil samples throughout 13 FS stations for physical and chemical analysis over 5 years. Within each of the 13 selected stations in the three first flooded dikes, soil sampling was carried out using random-systematic method. The total Nitrogen, absorbed Phosphorous and Potassium, and Organic Carbon of each sample were analyzed. Because of the abnormality of data, nonparametric test was adopted to compare means. All stations were classified into three groups using cluster analysis method. Based on the results, the variations of fertility factors are irregular between the dikes and amongst years. This could have been affected by several factors such as the quality and quantity of diverted flood, the characteristic of FS sites, and irregularity of sediment material deposited on the sites. Despite the low quality of soil fertility prior to the construction of these stations, in general, FS has a considerable role in improving the soil fertility. However, desirable objectives may be achieved in long term through occurrence of diverse flood events and suitable maintenance of the stations.
Z. Ahmad Abadi, M. Ghajar Sepanlou, S. Rahimi Alashti,
Volume 15, Issue 58 (3-2012)
Abstract
In order to investigate the effect of vermicompost on physical and chemical properties of soil, an experiment was carried out in split plot based on complete randomized block design in three replications in Sari Agricultural Sciences and Natural Resources University. The physical and chemical properties of soil included bulk density, particle density, total porosity, water holding capacity, field capacity, permanent wilting point, available water capacity, pH, organic carbon and electrical conductivity in soil. Six levels of fertilizer treatments (T1= control, T2= chemical fertilizer, T3= 20 tons vermicompost + 1/2 T2, T4 = 20 tons / hac vermicompost + 1/2 T2 , T5= 40 tons vermicompost + 1/2 T2 and T6= 40 tons / hac vermicompost) and three levels of application years, one year of fertilization (1385), two consecutive years of fertilization (1385 and 1386) and three consecutive years of fertilization (1385, 1386, 1387). The results of the study showed that the application of these treatments in soil were significantly effective in increasing the total porosity, water holding capacity, field capacity, permanent wilting point, available water capacity, organic carbon electrical conductivity and in decreasing the bulk density, particle density and pH compared to control. In Contrast years of consumption of fertilizer did not have any significant effect on the physical properties of the soil except for FC, PWP, AWC, pH, OC and EC. The interaction between years of consumption of fertilizers were significantly different only in particle density and field capacity.
S. M. Y. Bidaki, M. A. Hajabbasi, A. H. Khoshgoftarmanesh, H. R. Eshghizadeh,
Volume 16, Issue 59 (4-2012)
Abstract
Waste tire rubbers are considered one of the environment pollutants. Increased production of these pollutants has led to more serious consideration of ways to reduce the harms caused by their accumulation in the environment. Therefore, the effects of incorporation of waste rubber crushed particles in two sizes of 1-2 and 3-5 mm and the amounts of 0, 5, 10 and 20 Mg ha-1 in a calcareous soil (0-30 cm depth) on some chemical properties of soil was investigated in Isfahan University of Technology research field (Lavark). This experiment was performed using seven treatments along with a non amended control treatment in a randomized complete block design with three replications in 1387. Eight months after incorporation, soil samples were collected for laboratory analyses. Results of ANOVA tables show that soil pH, electrical conductivity, percentage of total nitrogen and DTPA-extractable concentrations of cadmium, lead, copper and iron were not significantly affected by application of rubber particles. Incorporation of rubber particles into the soil significantly increased soil organic carbon and carbon to nitrogen. Increases in the DTPA-extractable Zn in soils treated with 10 and 20 Mg ha rubber particles in fine and coarse sizes were significant in comparison with the control soil. DTPA-extractable Zn content in the soil treated with 10 and 20 Mg ha 3-5 mm waste tire rubbers particles was about two and three times higher than that in the control treatment, respectively. The results of this study showed that in short-time, incorporation of crushed tire rubbers particles had no significant effect on most chemical properties of the soil but increased the available Zn content. In this regard, further studies to monitor the effects of adding waste rubber crushed particles on organic matter mineralization, plant toxicity and physical properties of soil in long-term are recommended.
E. Farahani, M.r. Mosaddeghi, A.a. Mahboubi,
Volume 16, Issue 61 (10-2012)
Abstract
Hardsetting phenomenon is an indicator of poor soil physical quality. Hardsetting soils are soils with high rate of mechanical strength increase upon drying and are hardened and/or compacted when dry out. It is difficult to till such soils. Hardsetting soils have additional limitations such as poor aeration at wet conditions, low infiltrability and high runoff and erosion. Most of Iran soils have low organic matter content and it is expected that hardsetting phenomenon occurs in some of these soils. This study was conducted to investigate the hardsetting phenomenon on 9 soil series collected from Hamadan province. Three types of mechanical strength consisting tensile strength (ITS), unconfined compressive strength (UCS), and penetration resistance (PR) were measured on the repacked soil samples prepared in the lab. The ITS, UCS and PR tests were done on the soil cores which had been prepared at bulk density (BD) equal to 90% of critical BD for root growth (0.9BDcritical). The effects of intrinsic properties on the hardsetting phenomenon were studied, too. Based on the suggested definition in “International Symposium on Sealing, Crusting and Hardsetting Soils” to International :::union::: of Soil Science, in which a hardsetting soil has air-dry tensile strength ≥ 90 kPa, one soil (medium-textured) out of the studied soils showed the hardsetting phenomenon at 0.9BDcritical. It might be concluded that medium-textured soils are more susceptible to hardsetting. For all of the studied soils, the ITS increased with the increase in clay content. The increasing impacts of clay and carbonate contents were also observed for the UCS and PR, respectively. Calcium carbonate could act as a cementing agent in between the soil particles and brings about the soil susceptibility to hardsetting. Moreover, the decreasing trend of all soil mechanical strengths was observed with water content increase. Slope (b) of the exponential model (fitted to the soil mechanical strength characteristic curve), as an index of hardsetting, had positive correlation with the sand content and negative correlation with the silt content. Overall, texture and calcium carbonate content are major and effective properties in terms of hardsetting phenomenon in Hamadan soils.
S. Rahimi Alashti, M. A. Bahmanyar, Z. Ahmad Abadi,
Volume 17, Issue 63 (6-2013)
Abstract
In order to investigate the effects of municipal solid waste enriched with mineral fertilizers on some soil physical properties and lead (Pb) and chromium (Cr) concentration in plant organs of spinach, a field experiment was carried out in a factorial arrangement based on the randomized complete block design with three replications in 2008. The main plot included four levels of fertilizer, control without fertilizer, 20 tons of multiple solid waste + 50% chemical fertilizers and 40 tons of multiple solid waste + 50% chemical fertilizers per hectare and sub-plot consisted of a period of application in 3 levels of time (one, two and three years). The results showed that application of enriched municipal compost increased field capacity, soil porosity and moisture holding capacity, but particle and bulk density of soil decreased compared to the control. Also, the physical parameters in the two levels of emriched waste compost were higher than chemical fertilizer treatment. On the other hand, using for three-years the urban waste compost enriched fertilizer at all levels increased significantly (p 0.05) lead and chromium concentrations in spinach. The Pb and Cr accumulated in roots and shoots of spinach in urban using 40 tons of waste compost per hectare with 50 percent of chemical fertilizer for a period of three years and showed a significant increase. The amounts of fertilizer in all three levels were higher than the root element shoot.
F. Heydari, A. Rasoulzadeh, A. R. Sepaskhah, A. Asghari, A. Ghavidel,
Volume 17, Issue 65 (12-2013)
Abstract
The objective of this study was to evaluate the effects of crop residues management on soil physical and biological properties. The impacts of residue management on yield of forage corn and barley and soil micro-organisms population were also studied. The results showed that application of crop residues increased soil organic matter (22.2 %), saturated hydraulic conductivity (51.9 %), porosity (3.7 %), mean weight diameter (MWD) of the aggregates (5.4 %), and field capacity (5.8 %) and decreased bulk density (3.7 %) Whereas crop residues burring decreased soil organic matter (31.8 %), saturated hydraulic conductivity (36.6 %), porosity (0.5 %), mean weight diameter (MWD) of the aggregates (5.1 %), and field capacity (4.1 %) and increased soil bulk density (1 %). Soil water characteristic curves showed that the observed differences in soil water retention of application and burning residues treatments were higher at low matric suctions than those at high water matric suction. The results demonstrated that micro-organisms population significantly (P<0.05) decreased in residues burning treatment compared with the residues application treatment. Therefore, based on the results of this study residues' burning is not recommended in Ardabil.
H. Kashi, H. Ghorbani, S. Emamgholizadeh, S. A. A. Hashemi,
Volume 18, Issue 67 (6-2014)
Abstract
Change in land use and tillage practices has great influence on soil physical and chemical properties. The present study has focused on the effects of converting undisturbed soil to agricultural lands. Chemical and physical soil properties, infiltration, cation exchange capacity (CEC), electrical conductivity, pH, bulk density, porosity, sodium, potassium, total Ca + Mg, organic matter percentage, sodium adsorption ratio (SAR) and lime percentage were measured using standard frequently used methods. Fifty soil samples from agriculture land and other 50 soil samples from undisturbed land were collected from 0 – 30 cm depth and different statistical analysis were performed. Agriculture land is Cultivated for more than 20 years. The results showed that change in land use from undisturbed to disturbed soil did not significantly changed soil organic matter content. Also, soil electrical conductivity showed a huge increase whereas pH showed non-significant changes due to land use change. Unlike pH, SAR, organic matter percentage and lime percentage, some other soil parameters showed significant decrease in quality through land use change. Correlation coefficients of the effective factors were calculated to explain the main reason for lowering soil quality. The results showed that sodium in EC bulk density in porosity and CEC sodium and Ca+Mg in SAR EC in soil infiltration and Ca+Mg in organic matter showed the most correlation.
A Heidari, H. Haji Agha Alizadeh, A. R. Yazdanpanah, J. Amiri Parian,
Volume 20, Issue 78 (1-2017)
Abstract
Traditionally, most corn field in Hamedan Province is prepared for planting by moldboard plowing followed by a number of secondary tillage operations. In recent years conservation tillage systems have become more popular. This research was conducted in the form of a split plot experimental design with six tillage treatments and three replications. Main tillage methods including: (T1) conventional tillage (moldboard plow + cyclotiller equipped with roller), (T2) combination tiller (chisel plow equipped with roller) (T3) bandary tillage with chisel blades were considered as main plots and two P fertilizer application including: (F1) fertilize broadcasting and (F2) fertilizer bandary placement were considered as sub plots. During growing seasons, soil mechanical resistance (cone index), soil bulk density and water infiltration in soil were measured. At the end of the growing season (harvesting time), corn yield and its components were measured. Results indicated that tillage methods and soil depth had a significant effect on the soil bulk density and cone index. The effect of tillage on water infiltration in soil was significant. The effect of P fertilizer application on corn yield was significant (P≤0/01) and P fertilizer bandary placement with mean corn yield of 10862 kg/ha had higher yield value than the fertilizer broadcasting with mean corn yield of 9965 kg/ha. Although the difference between tillage methods for corn yield was not statistically different, T2 treatment with mean corn yield of 10913 kg/ha had higher yield value than the other two tillage treatments (T1 with mean corn yield of 10106 kg/ha and T3 with mean corn yield of 10222 kg/ha).
A. Ashraf Amirinejad, S. Ghotbi,
Volume 22, Issue 2 (9-2018)
Abstract
The soil quality is defined as the ability of soil to function as an essential part of the human habitat. In this study, the effects of land use change (conversion of forest lands into agricultural lands) on the soil physical quality were studied in the Gilan-e-Gharb region. For this study, soil samples were collected from surface and subsurface layers of both land uses, and the peak and shoulder slope positions, in Miandar and Vidjanan catchments. Soil physical properties such as soil texture and particle size distribution, soil hydraulic conductivity, bulk density, mean weight diameter of aggregates, water holding capacity, and the soil organic carbon content were measured. The results showed that land use change of the forest to agricultural lands resulted in a sharp decline in the soil organic matter (52%) and an increase in silt and sand percentage and soil bulk density. Also, deforestation decreased the mean weight diameter of aggregates (from 0.39 to 0.14 mm in Miandar) and clay percent. It caused a reduction in the total porosity followed by a decrease of soil water holding capacity, and a decrease in the saturated hydraulic conductivity (from 10.34 to 1.86 cm/h), as well. In general, the results proved that the land use change from forest to agriculture severely decreased soil physical quality and its productivity.
H. Ghamarnia, F. Sasani, B. Yargholi,
Volume 23, Issue 1 (6-2019)
Abstract
Exploring the homogenous regions for site specific management is important, especially in the areas under different anthropogenic activities. This was investigated using multi-way analysis including Factor Analysis, Hierarchical Clustering Analysis and k means in the areas under long-term wastewater irrigation over a period of more than 40 years, in Shahre Rey, south of Tehran. By using Factor Analysis model, eight factors as eight geochemical groups were extracted to explain approximately 60% of the total variance related to 37 soil physicochemical properties. The most important groups included the nutrient elements (OM, OC and N), micronutrients (Mn and B), soil water adsorption capacity (Clay, Silt, Sand and CEC), salinity and osmotic pressure (EC, OP and TDS) and sodification (SAR and Na). The maximum values of Cophenet and Silhouette coefficients were equal to 0.77 and 0.83, respectively, dictating the selection of the average linkage approach in Hierarchical Clustering Analysis and three clusters in the k-average method with 19, 24 and 34 mapping units. The Thiessen Polygons method in GIS was applied to separate the geochemical groups in the form of mapping units. This output, which was, in fact, the combination of multi-way models and its visual representation in GIS under separated mapping units of study area, could present suitable management activities for the areas under each cluster.
F. Amirimijan, H. Shirani, I. Esfandiarpour, A. Besalatpour, H. Shekofteh,
Volume 23, Issue 3 (12-2019)
Abstract
Use of the curve gradient of the Soil Water Retention Curves (SWRC) in the inflection point (S Index) is one of the main indices for assessing the soil quality for management objectives in agricultural and garden lands. In this study Anneling Simulated – artificial neural network (SA-ANN) hybrid algorithm was used to identify the most effective soil features on estimation of S Index in Jiroft plain. For this purpose, 350 disturbed and undisturbed soils samples were collected from the agricultural and garden lands and then some physical and chemical soil properties including Sand, Silt, Clay percent, Electrical Conductivity at saturation, Bulk Density, total porosity, Organic Mater, and percent of equal Calcium Carbonate were measured. Moreover, the soil moisture amount was determined within the suctions of 0, 10, 30, 50, 100, 300, 500, 1000, 1500 KP using pressure plate. Then, the determinant features influencing the modeling of S Index were derived using SA-ANN hybrid algorithm. The results indicated that modeling precision increased by reducing the input variables. According to the sensitivity analysis, the Bulk Density had the highest sensitivity coefficient (sensitivity coefficient=0.5) and was identified as the determinant feature for modeling the S Index. So, since increasing the number of features does not necessarily increase the accuracy of modeling, reducing input features is due to cost reduction and time-consuming research.
B. Moravejalahkami,
Volume 23, Issue 3 (12-2019)
Abstract
Furrow irrigation is the most common method of surface irrigation. However, the accurate estimation of the soil water infiltration equation is the most important challenge for evaluating this method of irrigation. In this study, a fast and simple method that is named soil intake families and presented by USDA-NRCS (RSIF), evaluated for estimation of the Kostiakove-lewis infiltration equation parameters based on soil information. Also, this method was developed based on irrigation condition and considering soil characteristics (D-RSIF). Two treatments including constant and variable inflow discharge were tested with 4 repetitions and different irrigation phases including advance, storage and recession were simulated by developed Zero-Inertia model using RSIF and D-RSIF methods. The results showed that using the zero- inertial model, the difference between simulated advance times and simulated runoff were significant at 5% level for D-RSIF and RSIF methods. For variable inflow discharge, the error of estimating runoff volume was 10%, 6%, 12% and 41% for RSIF, D-RSIF, multilevel calibration and two-point methods respectively. Also, the irrigation scheduling error, based on soil physics characteristics (RSIF) was 14% that means consuming water more than required.