Search published articles


Showing 3 results for Soil Pollution.

A. Taebi, K. Jeirani, A. Mirlohi, A.r. Zadeh Bafghi,
Volume 11, Issue 42 (1-2008)
Abstract

  Some industrial processes, such as plating and gold mining, utilize cyanide, which entering in their effluents. Because cyanide compounds are toxic contaminants, the waste-containing cyanide must be treated before discharge in the environment. Several methods are available for cyanide removal or detoxification. Natural degradation, alkaline chlorination, and oxidation with hydrogen peroxide are the most common methods in full-scale plants. Because of technical and economical concerns related to these methods, biological treatment processes have recently come under consideration. In phytoremediation, plants potential for pollutant removal is used. The main objective of present study is to investigate feasibility and potential of phytoremediation of cyanide-polluted soils by non-woody plants. The experiments carried out in this study were a completely random factorial design procedure, with three replications. Three non-woody plants: sorghum (as a cyanogenic cereal plant) and fescues with and free of endophyte (as grasses), were examined. Analysis of variance of the data obtained on soil cyanide reduction and cyanide accumulation in plants showed that phytoremediation is a suitable technique for low concentration of cyanide-polluted soils. Besides, it was been found that sorghum has a better soil cyanide removal efficiency than fescues, so that a significant portion of soil cyanide will accumulate in sorghum tissues.


P. Ahmadpour, M. Soleimani,
Volume 19, Issue 73 (11-2015)
Abstract

Cadmium (Cd) is a metal with high toxicity and solubility in water, which is a serious environmental threat to human health. Phytoremediation is an environment-friendly method and a promising new and cost effective technology that uses plants to clean organic and inorganic contaminated media. This study was conducted to evaluate the potential of Jatropha curcas for remediation of soils contaminated with Cd. Seedlings were planted in the soil spiked with Cd in amounts of 0, 25, 50, 75, 100 and 150 mg kg-1 (Cd0, Cd25, Cd50, Cd75, Cd100 and Cd150) for a period of five months. Biocentration factor (BCF, metal concentration ratio of plant roots to soil), translocation factor (TF, metal concentration ratio of plant shoots to soil) and removal efficiency (RE, total metal removed by plant biomass to total metal loaded in soil) were determined. Cd concentrations among plant parts were in the following trend: roots>stems>leaves. The highest total Cd concentration (up to 1100 mg kg-1) and the highest RE were found in Cd150 and Cd25, respectively. BCF and TF of the plant were more and less than 1, respectively. Hence, although this species has a potential to be used in phytostabilization of Cd-contaminated soil, more researches in the field condition are needed.


A. Khosravi-Dehkordi, M. Afyuni, A. Soffianian,
Volume 20, Issue 77 (11-2016)
Abstract

Pollutants are considered the disturbing factors of environment, and among them the heavy metals are more important considering their non-degradability and physiological effects on organisms in low concentrations. The goal of this research was to investigate the effect of industrial landuse on Cd and Pb concentrations in surface soils of the southwest Isfahan. According to satellite images and topographic maps (1:50000) of the study area, soil samples (depth: 0–20 cm) were collected using random sampling. A total of 38 surface soil samples were obtained from industrial areas (lowest distance = 1480 m) in the area of 73481 ha. Total concentrations of Cd and Pb in the digested solution were measured by Atomic Absorption Spectrophotometry (AAS). Using Arc GIS, the spatial distribution patterns and Cd and Pb variography of samples were analysed and finally the best models of spatial distribution of heavy metals were achieved. The primary results showed that the mean concentrations of Cd, and Pb of surface soil samples in industrial areas were 1.8 to 31.5 mg Kg-1 higher than the world’s mean values, respectively. Although the mean concentrations of Cd and Pb were respectively 8 to 700 mg Kg-1 lower than the standard of Iranian Department of Environment for industrial landuse.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb