Search published articles


Showing 2 results for Soil Profile

Z. Amiri, M. Gheysari, M. R. Mosaddeghi, M. S. Tabatabaei, M. Moradiannezhad,
Volume 23, Issue 2 (9-2019)
Abstract

Location of soil moisture sampling in irrigation management is of special importance due to the spatial variability of soil hydraulic characteristics and the development of root system. The objective of this study was determination of the suitable location for soil moisture sampling in drip-tape irrigation management, which is representative of the average moisture in the soil profile (θavg) as well. For this purpose, soil moisture distribution (θij) at the tassel stage of maize and one irrigation interval (68-73 day after plant) were measured at the end of season. The results showed more than 70% length of the root of plant was located in 30 cm of the soil depth. By accepting ±10% error in relation to the averaged soil moisture, some region of soil profile was determined which was in the acceptable error range and also near the averaged soil moisture (0.9θavgRec<1.1θavg). By overlapping θRec in one irrigation interval, the appropriate location for soil moisture sampling was the horizontal distance from drip-tape line to 20 cm and the depth of 10-20 cm from the soil surface. To determine the appropriate place for soil moisture sampling, the development of root system and the maximum concentrated root length density in the soil profile extracting the maximal soil moisture should be taken in to account, parallel with the averaged soil moisture.

S. Rezapour, P. Najafi, B. Atashpaz,
Volume 24, Issue 2 (7-2020)
Abstract

In the present study, six soil profiles belonging to five soil types were dug, described and sampled. Soil samples were analyzed for the determination of different physicochemical properties and total and DTPA-extractable iron (Fe), zinc (Zn), copper (Cu), manganese (Mn), lead (Pb), and cadmium (Cd). Considering the variability of pH and calcium carbonate equivalent, the examined soils were alkaline and calcareous. A considerable change in the values of the DTPA fraction of Fe (1.4-25.8 mg/kg), Zn (0.01-3.3 mg/kg), Cu (0.32- 6.2 mg/kg), Mn (1-11.8 mg/kg), Cd (0.05- 0.12 mg/kg) and Pb (0.22- 2.56 mg/kg) as well as in the total fraction of Fe (10.6-20.6 g/kg), Zn (35- 67.5 mg/kg), Cu (9 to 26.40 mg/kg), Mn (262- 588.8 mg/kg), Cd (0.5- 1.75 mg/kg) and Pb (17- 31.3 mg/kg) was observed in  different soils. The content and pattern of both DTPA and total fraction of the metal were varied among the soil types, which could be related to several processes such as the diversity of weathering rate, geomorphologic condition, soil formation process, different physicochemical properties of soils, and the inputs of different agrochemical compounds. The concentration of both DTPA and total fraction of the metal were in the acceptable maximum level in the majority of the soil samples.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb