Search published articles


Showing 2 results for Soil Salinization

M Valipour, M Karimian Eghbal, M.j Malakouti, A Khosh Goftamanesh,
Volume 12, Issue 46 (1-2009)
Abstract

Salinization and alkalization are considered spatiotemporal dynamic soil degradation processes. In order to investigate the effects of agricultural activities on land degradation and soil salinity, Shamsabad area in Qom province was selected. Aerial photos (1955) and satellite images (1990-2002) were used to examine the changes in land use. Soil samples were collected from 25 locations in the study area from 0-50 cm and 51-100 cm depth at each location. For comparative purposes, sampling locations in this study were similar to locations used for salinity study in 1983. For each sample, pH, electrical conductivity (ECe), base saturation percentage, exchangeable sodium, lime and texture were measured. Land use and salinity maps were created by using geographic information system (GIS) softwares. Results revealed an increase of 9.5 times in cultivated lands in 47 years. Increase in agricultural activities in the study area has also intensified the pressure on water resource in the area, lowering ground water tables and degrading water quality. In the 0-50 cm soil depth, the average soil ECe was 6.5 dS/m in 1983, which increased to 10.7 dS/m in 2005. If soil salinity trend and pressure on water resources continue, large part of Shamsabad area is expected to change to desert in near future years.
M.h. Rahimian, J. Abedi Koupaei,
Volume 25, Issue 3 (12-2021)
Abstract

Soil salinization is a phenomenon that threatens agricultural lands and natural areas, leading to reduced productivity, declinations of soil resources and vegetation covers, and finally, the abandonment of these areas. This study has quantified the groundwater Capillary Rise (CR) and actual Evapotranspiration (ETa) and their relationship with the soil salinity of Azadegan plain, west of Khuzestan Province. The study area has an arid climate, characterized by shallow and saline water table and a high potential evaporation rate. For this purpose, field samplings were carried out in four consecutive seasons of the year to measure salinity, soil moisture, and texture, groundwater table, and salinity at 27 scattered representative points of the study area. The CR values were estimated in different seasons of the year using UPFLOW model. Moreover, four representative Landsat satellite images were acquired to map seasonal changes of ETa through the SEBAL algorithm. Then, the effects of ETa on CR and consequent soil salinity build up were quantified in a seasonal time scale. The results showed that the average daily ETa of Azadegan plain varied from 1.55 to 7.96 mm day-1 in different seasons which caused a capillary rise of around 1.2 to 1.5 mm.day-1. This has led to the upward movement of 12 to 18.8 ton ha-1  month-1 of salts from shallow groundwater to the soil surface, which has caused surface soil salinization. Also, there was a close relationship between ETa, CR, and soil salinity parameters, which can provide insight into modeling of spatial and temporal changes of soil salinity and provision of solutions to reduce the accumulation of solutes in the soils of the study area.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb