Search published articles


Showing 3 results for Soil Temperature

A.a Sabziparvar, H Tabari, A Aeini,
Volume 14, Issue 52 (7-2010)
Abstract

Soil temperature is one of the important variables in hydrology, agriculture, meteorology and climatology studies. Owing to the fact that soil temperature is only measured at synoptic stations, reconstruction of this variable in other places is of great importance for many relevant agricultural surveys. Using 10-year (1996-2005) daily meteorological observations, including: air temperature, global solar radiation, precipitation, relative humidity, vapor pressure, wind speed and air pressure data, different empirical relationships are suggested. At statistically significant level (P<0.05), the suggested regressions are reliable for estimating soil temperature in various depths (5, 10, 20, 30, 50 and 100 cm) and different climate types. Using soil temperature as the dependent variable and the other meteorological parameters as the independent variables, the multivariable relationships are classified accordingly. The results indicate that the impact of meteorological parameters on soil temperature is not the same. At statistically significant level (P<0.05), the mean daily air temperature presented the highest correlation coefficients with soil temperature for all climate types (on average, from R2>0.91 for warm semi-arid, to R2>0.85 for humid climates). Other results highlighted that the correlation coefficients decreased as the soil depth increased. The behavior of statistical validation criteria of the suggested relations are also discussed for all the mentioned climates.
N. Parsafar , S. Marofi,
Volume 16, Issue 62 (3-2013)
Abstract

In this research, we estimated soil shallow depths temperatures using regression methods (Linear and Polynomial). The soil temperatures at soil depths (5, 10, 20, 30, 50 and 100 cm) were correlated with meteorological parameters. For this purpose, temperature data of Hamedan station (in the period 1992-2005) were employed. Soil temperature data were measured on a daily basis at 3 PM, 9 PM and 3 AM. MS Excel was used for deriving the regressions between soil temperature and meteorological parameters (air temperature, relative humidity and sunshine hours). The results showed that the highest coefficient of determination (R2) of the linear regression was between soil temperature in 20 cm soil depth and air temperature at 3 AM (R2= 98.15%) and the lowest value in 100 cm soil depth at 3PM (R2= 83.96%). Also, the highest R2 of non-linear regression was observed between soil temperature in 10 cm soil depth and air temperature at 3 AM (R2= 98.45%) and lowest value in 100 cm soil depth at 3PM (R2= 84.11%). The results showed that the highest and lowest values of R2 of linear relations between meteorological parameters (relative humidity and sunshine hours) and soil temperature were observed in 10 cm soil depth (at 3 AM) and in 100 cm soil depth, respectively. Correlations of soil temperature with air temperature were greater than those with the other two parameters. Moreover, R2 values of non- linear relation were higher than linear relation.
Sh. Zand-Parsa, S. Parvizi, A. R. Sepaskhah, A. A. Kamgar Haghighi,
Volume 22, Issue 1 (6-2018)
Abstract

In this study, the values of moisture and soil temperature were estimated at different depths and times under unsteady conditions by solving the Richards’ equation in an explicit finite difference method provided in Visual Studio C#. For the estimation of soil hydraulic parameters, including av and nv (coefficients of van Genuchten’s equation) and Ks (saturated hydraulic conductivity), soil moisture and temperature at different depths were measured by TDR probes and the stability apparatus, respectively. The objective function [equal to Root Mean Square Error (RMSE)] was minimized by the optimization of a parameter separately, using the Newton-Raphson method, while, the other parameters were considered as the constant values. Then, by replacing the optimized value of this parameter, the same was done for other parameters. The procedure of optimization was iterated until reaching minor changes to the objective function. The results showed that soil hydraulic parameters (coefficients of van Genuchten’s equation) could be optimized by using the SWCT (Soil Water Content and Temperature) model with measuring the soil water content at different depths and meteorological parameters including the  minimum and maximum temperature,, air vapor pressure, rainfall and solar radiation. Finally, the measured values of soil moisture and temperature were compared to the depth of 70cm in spring, summer, and autumn of 2015. The values of  the  normalized RMSE of soil water content were 0.090, 0.096 and 0.056 at the  soil depths of 5, 35 and 70 cm, respectively, while the values of the normalized RSME of soil temperatures were 2.000, 1.175 and 1.5 oC at these depths, respectively. In this research, the values of soil hydraulic parameters were compared with other previous models in a wider range of soil moisture varying from saturation to air dry condition, as more preferred in soil researches.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb