Showing 9 results for Soil.
R Molavi, M Baghernejad, E Adhami,
Volume 13, Issue 49 (10-2009)
Abstract
Fire is widely used to clear farms in Iran, while there is little information regarding the effects of fire on the characteristics, especially mineralogy of soils. The objectives of the present study were to 1) compare some physico-chemical properties of burned and unburned soils and 2) evaluate minerals transformation in top soil layer resulting from increasing temperature. Soil samples were taken from 0-5 and 5-15 cm depths of two burned places, an agricultural soil from Takht-e-Jamshid area and Bamoo forest, in four replications. Physico-chemical analyses were carried out on burned and unburned samples. X-ray diffraction technique was used to identify minerals of clay fraction in 0-5 cm depth burned and unburned soil, and also to compare transformation of minerals (if any) after heating at 300˚C and 600˚C for 2, 4, 8 and 12 h. Burning increased soil pH and sand sized fraction in 0-5 cm, and P and K in both depths of Bamoo forest. Changes in soil properties of agricultural filed were negligible. XRD analyses showed the reduction in the intensity peaks of chlorite and illite after burning. Lower relative quantity of chlorite and illite was observed in various times of 300˚C treatment in comparison to control, while they were not observed in 8 and 12 h of 600˚C. No change was observed in the peak of quartz in forest and field soils after burning and after various heat treatments.
T. Rahimi, A. Ronaghi,
Volume 16, Issue 59 (4-2012)
Abstract
Contamination of agricultural soils by heavy metals is a serious threat from both agricultural and environmental standpoints. Among heavy metals, cadmium (Cd) toxicity for humans and plants is of great concern due to its high mobility and phytoavailability in soil even at low concentrations. Opposite to Cd, Phosphorus (P) is an essential nutrient for plant growth. A greenhouse experiment was carried out in a completely randomized design to examine the influence of Cd, P and their interaction on the growth and chemical composition of spinach grown on a calcareous soil. Treatments consisted of four Cd levels (5, 10, 20 and 40 mg/kg soil as cadmium sulfate) and four P levels (0, 20, 40 and 80 mg/kg soil as mono-calcium phosphate) in three replicates. The results indicated that 40 mg Cd significantly decreased spinach dry weight by 47% but P application decreased detrimental effect of Cd on spinach dry weight. Also, phosphorus application significantly decreased Cd concentration in spinach aerial parts by 78%. Increasing Cd levels increased concentration of this element in spinach shoots. Addition of 40 mg Cd decreased P concentration by 21.5% in aerial parts. Zinc (Zn), manganese (Mn), calcium (Ca), and nitrogen (N) concentration significantly decreased with P application but increased concentration of sodium (Na). Cadmium application decreased Zn concentration but increased Ca, Na and N concentrations in spinach. Our tentative conclusion is that P application in P-deficient soils is probably effective in decreasing Cd concentration and the detrimental effect of Cd on spinach growth, indicating a negative interaction between these elements. Prior to any fertilizer recommendation, the results of this experiment should be verified under field conditions
M. Alizadeh, F. Mirzaii, T. Sohrabi , M. Kkavosi , M. R Yazdani,
Volume 17, Issue 66 (2-2014)
Abstract
Water management in cracked paddy soils is an important issue in rice cultivation. In order to study organic matter and zeolite effect and their interaction on moisture conditions and hydraulic and physical properties of paddy soils, the organic matter (rice straw) at four levels (0, 8, 16 and 24 tons per hectare), zeolite at four levels (0, 0.5, 1 and 1.5 percent ), and also moisture stages of soil at 5 levels were selected. This experiment was conducted in Rice Research Institute of Iran. Randomized Complete Block Design (RCBD) was used to study the effect of treatments on different subjects. The amount of moisture, bulk density and the distance of soil from the wall of container were measured in a 4-month period. The obtained results showed that the interaction effects of organic matter and zeolite on soil moisture content were statistically significant at one percentage level. Addition of plant residues caused an increase in soil moisture weight and reduction in bulk density compared to the control treatment. It was also found that soil moisture content and bulk density were highly correlated. Bulk density of control treatment ranged from 0.75 to1.7 gr/cm3, while with addition of 1.5 % crop residue the bulk density ranged from 0.7 to 1.3gr/cm3. Overall results show that crop residues are effective in reduction of crack parameters of soil , but zeolite cannot be effective although it causes more maintenance of soil moisture.
S. Jahanbakhshi, M. R. Rezaei, M. H. Sayyari-Zahan,
Volume 18, Issue 70 (3-2015)
Abstract
Phytoremediation is one of the cleanup methods of polluted soil that is possible accumulation of heavy metals in plant tissues, exclusion of these elements from contaminated soil. Therefore, to achievement the objective, this research was done in pot culture using completely randomized design at the University of Birjand in 2011. Two species Spinacia oleracea and Lepidium sativum were used to remove or reduce the concentration of Cadmium (Cd) and Chromium (Cr). In this study, different levels of Cadmium (CdCl2) concentrations including 5, 50, 100 mg kg-1 and also chromium (CrCl3) concentrations 50, 100, 150 mg kg-1 were used respectively and control as well for each species with three replications. Results indicated that the Cd and Cr concentration in shoot of Spinacia oleracea and Lepidium sativum significantly affected by their concentration in soil (p<0/01). Results revealed that increasing of Cd and Cr concentrations in soil, showed an increase concentration of both metal in shoot of Spinacia oleracea. increasing of Cd concentrations in soil, showed an increase concentration of it in shoot of Lepidium sativum but the concentration of Cr was less. Also, comparison of cadmium and chromium concentrations in shoot of Spinacia oleracea and Lepidium sativum showed that two species showed same behavior of Cd and different behavior Cr concentration. So the analysis of data showed that both of species are appropriate for absorption of Cd and Cr and phytoremediation technology as well. It can be concluded that in high soil Cr concentration for phytoremediation Lepidium sativum is not appropriate.
H. R. Owliaie, M. Najafi Ghiri,
Volume 18, Issue 70 (3-2015)
Abstract
Topography and land use are among the most important factors affecting the soil formation. Chemical forms of Fe and magnetic susceptibility (χ) are widely used for the evaluation of soil development. This study was conducted in order to determine the effect of these factors on χ. A toposequence was selected in Madvan Plain, Northern Yasouj. Nine soil profiles (paddy and dryland soils) were dug and sampled from diagnostic horizons. Magnetic susceptibility was measured by Bartington Dual Frequency, MS2 Meter at frequencies of 0.46 and 4.6 KHz. Results indicated that less amounts of χ, frequency dependence of χ (χfd%) and CBD extractable Fe (Fed) (3.1, 2.6 and 2.7 times, respectively), and more quantities of oxalate extractable Fe (Feo) and Feo/Fed ratio (5 and 7.2 times, respectively) were measured in paddy soils. The highest value of χ was observed in pedons located on plateau and piedmont plains, and the lowest belonged to those located on river terraces with aquic conditions. Compared to paddy soils, χ enhancement at soil surface was greater (17%) in dryland soils. A positive correlation existed between χ and some soil characteristics such as Fed, clay content and χfd%.
E. Chavoshi, M. Afyuni, M. A. Hajabbasi,
Volume 19, Issue 72 (8-2015)
Abstract
Transport of fluoride and consumption of groundwater with excess fluoride concentrations poses a health threat to millions of people around the world. The objective of this study was to simulate transport of fluoride (F) using HYDRUS-1D model. The study was conducted in lysimeters at Lavark research station site in Isfahan. The treatments consisted of two concentrations of F (157 and 315 mg kg-1). The duration of the study was 125 days. Some of soil physical and chemical properties, soluble F and total F concentration were determined during the study. The results showed the transport of F in calcareous soil profiles. This may be due to the high pH and desorption of F ion as a result of repulsion by the more negatively charged soil surfaces. The highest concentration of total F and water soluble F were observed in the 10 cm surface soil layer. The concentration of F decreased with increased soil depth. The correlation coefficient was significant between the water soluble fluoride and the total fluoride (1% level). Also, the difference between the observed t- value and a critical value on the t distribution is statistically insignificant. It showed that the model simulated successfully water soluble F concentration in the soil profile.
H. Kheirabadi, M. Afyuni, S. Ayoubi, A. Soffianian,
Volume 19, Issue 74 (1-2016)
Abstract
Heavy metals are known to have deleterious effects on human health. The main route of human exposure to heavy metals is the daily intake of food. This study was designed to investigate the heavy metal concentrations (Cu, Zn, Mn, Fe, Cr, Ni and Cd) in soil and major food crops (wheat, potato and corn) and estimate the health risks of metals to humans via soil and the crops consumed in Hamedan Province, using the total non-cancer hazard quotient. Daily metal intakes were estimated for three receptor groups and then compared with health guideline values. The non-cancer risk estimations showed that chromium, manganese, cadmium, zinc, Iron, Nickel and copper have oral Hazard Quotient values less than a value of one. The Hazard Index values were greater than 1 for all age groups, suggesting that adults and children in the study area may experience a potential non-cancer risk due to diet of heavy metal via wheat, corn and potato consumption and soil ingestion. Consumption of plant foods particularly wheat was found to be the major route of human exposure to heavy metal. The soil ingestion route is also important.
M. Zolfi Bavariani, A. Ronaghi, N. Karimian, R. Ghasemi, J. Yasrebi,
Volume 20, Issue 75 (5-2016)
Abstract
This study was conducted to investigate the effects of poultry manure (PM) and its derived biochars on chemical properties of a sample calcareous soil. Poultry manure and its derived biochars at 200(B200), 300(B300) and 400(B400)°C were incorporated with 400 g of soil at 2% level (w/w) and incubated for 150 days. Some chemical properties of soil and bio-availability of some nutritional ingredients such as phosphorous, potassium, iron, manganese, zinc and copper were determined at different times of incubation. Soil nutrients availability, organic carbon (OC), electrical conductivity (EC) and cation exchange capacity (CEC) increased by addition of all these organic substances. Biochars prepared at higher temperatures were more effective in increasing soil OC and its durability. Addition of PM and B200 decreased soil pH, whereas B400 increased it. Although highest soil EC was observed in B300 and B400 treated samples in the early stages of incubation, the rate of increasing in soil EC was higher at PM and B200 treated samples. In general, it was concluded that biochar prepared at 300°C had the highest effect on availability of nutrients and their durability in the soil.
M. Hosseini, E. Adhami, H. R Owliaie,
Volume 22, Issue 1 (6-2018)
Abstract
Cadmium (Cd) is of special importance among heavy metals because its toxicity to the plant is 20 times higher than other heavy metals. The present study was conducted to evaluate the trend of available soil Cd changes over time and its relationship with soil properties. Treatments consisted of 13 soil samples and two Cd rates (12.5 and 25 mg kg-1) as a factorial in a complete randomized design with two replications. DTPA extractable Cd was measured upon 5, 10, 20, 30, 60 and 90 days after adding Cd rates to the soils. The results showed that DTPA extractable Cd was increased as Cd application rates was raised in all soils. DTPA extractable Cd was decreased over time; however, at the end of the experiment, much of the added cadmium to the soil remained in use. Among the soil properties, calcium carbonate showed a significant negative correlation with DTPA extractable Cd in most of the incubation times in both Cd rates. DTPA extractable Cd also showed a significant negative correlation with pH and soil sand and a significant positive correlation with OC. Also, the results of the fitting of cadmium adsorption data with the kinetic equations showed that the exponential function equation was the most suitable kinetics descriptive equation for variations in cadmium adsorption in the studied soils.