Search published articles


Showing 12 results for Spillway

S. Kouchakzadeh,
Volume 6, Issue 3 (10-2002)
Abstract

Side channel spillways have a common usage in conveyance and distribution networks, high dams, water and wastewater treatment plants, and surface drainage networks. A side channel carries spatially varied flow with increasing discharge and their water surface profiles is a main feature in the design process. Usually, the bottom width of the channel is flared in the flow direction and an end sill is also installed at the downstream end to provide a control section and to generate an even water surface profile. In this study, the impact of installing an end sill on the flow characteristics in a non-prismatic side channel is presented. Six distinct longitudinal profiles were clearly observed in each run and the difference between the mid points of the maximum and the minimum profiles of each run was used to evaluate the sill effects on the water surface profile and the energy dissipation. The results indicated that the maximum and the minimum differences are, respectively, equal to critical depth and half of it generated at the channel downstream end. Also, based on an envelope of the data, a method was proposed to determine the maximum potential impact of an end sill that might have on the flow depth, which could also be considered as a guideline in the design process.
M. Yasi, M. Mohammadi,
Volume 11, Issue 41 (10-2007)
Abstract

  A labyrinth spillway is an overflow spillway to regulate and control flow in canals, rivers and reservoirs. The main hypothesis for the development of such a spillway is to increase the discharge per unit width of structure for a given headwater. This type of structure is often an efficient alternative to a gated-spillway type where either the increase of the flood-passage capacity or the control of the water surface upstream is concerned. This study was aimed to investigate the hydraulic performance of labyrinth spillways of general trapezoidal planform with simple curved apexes. In the experimental work, twelve spillway models with double cycles were considered using three different curved apexes (R/w= 0.15, 0.2, 0.25), each with four different crest heights (w/P= 1.5, 2, 3, 4). Based on the cited recommendations, the length magnification was set to a constant ratio of (l/w= 3) the crest shape was to be of a semi-circular form with simple radius (r= 15 mm) and the spillway walls were vertical with the thickness of T= 2r. An intensive experiment was carried out over a wide range of flows, providing 720 flow data ranging from free flow to submerged flow conditions. 1D flow equation was presented using combined mathematical and dimensional analysis. A coefficient of discharge, Cd, was introduced to represent the influence of the effective geometric and hydraulic parameters on the flow capacity over the spillway. Modular limit was also controlled to see whether the flow over the spillway would be submerged. The results of the study indicate that the modified curved planform of the spillway apexes with consistent divergence in the downstream channel introduces a significant improvement in the flow efficiency over the labyrinth spillways. Spillways with narrower curved apexes (i.e. R/w≤ 0.2), and with the vertical-aspect ratio of (2≤w/P<3) provide more stable and higher hydraulic performance than any other labyrinth planforms over a wide range of flows (i.e. 0.10/P<0.6). In terms of the flow capacity, the proposed spillway model is shown to be more efficient than other zig-zag planforms (i.e. triangular and trapezoidal shapes) with an identical crest length.


H Faghih, M Kholghi, S Kochekzadeh,
Volume 12, Issue 46 (1-2009)
Abstract

Overtopping is one of the main factors responsible for dam failure. To avoid overtopping, dam is equipped with one or some spillways to release the water impounded in the reservoir. The number and size of these spillways are determined on the basis of design flood. Determination of design flood of dam spillway can be formulated as a multiobjective risk problem. This problem can be solved by Quantitative Risk Analysis Methods. Here, four economical design methods which are based on risk analysis including, United States National Research Council (NRC), US Civil Engineering, Unit Curve and Partitioned Multiobjective Risk (PMR) were studied. In order to compare these methods, Risk Analysis was performed for re-determining design flood of Pishin Dam Spillway. This Dam has been constructed on the Sarbaz River. Owing to the fact that the integrals of the expected damage relations in the two methods, i.e., Civil Engineering, and Partitioned Multiobjective Risk are analytically unsolvable, Romberg numerical integration technique and Excel software were utilized for the related calculations and drawing graphs. Also, in order to select suitable distribution, the flood analysis was done using Smada software. The findings of the study indicated that design flood determined by the three methods, i.e., Civil Engineering, National Research Council and Unit Curve was almost the same, and that the amount of flood was less than the 10,000-year-old flood while design flood determined by Partitioned Multiobjective Risk Method, was larger than the 10,000- year-old flood.
M. Toozandehjani, M. Kashefipour,
Volume 16, Issue 62 (3-2013)
Abstract

One of the usual ways to dissipate excess energy in the dam's downstream is hydraulic jump. Hydraulic jump is a rapidly varied flow, in which the flow conditions change from supercritical to sub-critical with a large amount of energy loss. In this research, a combination of two water jets in the form of overflow dam and underflow through a slot on the body of an ogee dam with the USBR standard was established in order to decrease the length and sequent depth in a hydraulic jump. In these experiments, the underflow from the slot was designed with three out passages of 0, 45, and 90 degrees in respect horizontal line. Six different discharge ratios were used for each slot and the effect of each experiment conditions on decreasing of the length and sequent depth of hydraulic jump was investigated. The results showed that the confluence of two jets with 45 degrees from the slot had the maximum effect on the reducing of the length of hydraulic jump and sequent depth, and when 26 percent of the total discharge passed through the slot as underflow, it caused the length of hydraulic jump to be reduced by 50 percent in comparison with the classic jump. This slot not only decreases the length and sequent depth of hydraulic jump but also the sediment behind the dam can be evacuated through it. Moreover, it increases the discharge coefficient.
A. A. Kamanbedast, S. R. Mousavi,
Volume 20, Issue 78 (1-2017)
Abstract

Morning glory spillway is one of the spillways and used when it is not possible to use any other spillways. With the onset of submergence and flow loss, and intensification of circulation and vortexes, spillway performance decreases severely. With decreasing discharge coefficient, the height of water in the reservoir increases and the risk of dam damage, caused by the lack of spillway ability of great flow discharge, increases. Anti-vortex piers are used to solve this problem. The increase of the submergence threshold can provide ability of greater flow discharging, without spillway submergence and its negative consequences. Anti-vortex piers, in addition to correcting circulation and vortexes, may also be effective in increasing the submergence threshold. To investigate this possibility, 110 experiments were performed with the physical model on spillways with square and circular inlet section in different modes and number of anti-vortex piers. Results show that increasing number of Anti-vortex piers increases the submergence threshold and spillway can discharge greater inflow and height of water without being submerged. The effect of the overflow of the circle shape, because currents and vortexes spinning in a circle overflow is higher than square spillway. Also the maximum discharge coefficient was observed when 4 vortex breakers were installed at the angle of 90 degrees.


K. Qaderi, R. Jafarinia, B. Bakhtiari, Z. Afzali Goruh,
Volume 22, Issue 1 (6-2018)
Abstract

The investigation of local scour below hydraulic structures is so complex that makes it difficult to establish a general model to provide an accurate estimation for the local scour dimension. During the last decades, Data Driven Methods (DDM) have  been used extensively in the modeling and prediction of unknown or complex behaviors of systems One of these methods is Group Method of Data Handling (GMDH), that is a self-organization approach and increasingly produces a  complex model during the performance evaluation of  the input and output data sets. So, the objective of this study was to investigate the potential of the GMDH method in the accurate estimation of local scouring geometry (maximum scour depth, the distance of maximum local scour depth till Ski-jump bucket and length of local scour) below the Siphon spillway with Ski-jump bucket energy dissipaters for a set of experimental data. 80% of data set was used for the training period and the remaining data set was used for the test period. The average values of MSRE, MPRE, CE and RB for the nonlinear second order transfer function (FUNC1) were calculated to be 0.92, 0.02, 8.74, -0.01; also, for the nonlinear first order transfer function (FUNC2), they were 0.85, 0.02, 10.43 and -0.02, respectively. The results indicated that the performance of FUNC1 was better than FUNC2. Also, the value of the coefficient of determination (R2) for the estimation of local scour dimension using different methods such as s linear regression, nonlinear regression and ANN indicated the high performance of the developed model of GMDH in the accurate estimation for local scour dimensions.

J. Rouzegar, A. A. Kamanbedast, A. Masjedi, M. Heidarnejad, A. Bordbar,
Volume 23, Issue 3 (12-2019)
Abstract

Morning glory spillway is one of the spillways that used to passing of flood from high to low level. This spillway is used in the reservoir dams that are placed in narrow valleys and in many locations with high slope in reservoir walls. In the Morning glory spillways, the vortex flow can reduce discharge, discharge coefficient and the performance of spillway. The zigzag spillway, as another type, is introduced as a proper option for compensating the problem of passing maximum possible flow rate, usually encountered by spillways. In the present study, the experimental results of a physical model were used to develop a hydraulic design with squire and circle inlet and analysis method for Labyrinth Morning Glory Spillway. The analysis of experimental data in circle and square inlet showed, that increase in length of spillway and zigzag, causes decrease in the discharge coefficient. Finally the result of effect spillway inlet on flow rate demonstrate that discharge coefficient in square inlet is more than circle, whereas without vortex breaker.

S. A. Banishoaib, A. Bordbar, A. A. Kamanbedast, A. Masjedi, M. Heidarnejad,
Volume 23, Issue 4 (2-2020)
Abstract

A ‘spillway’ is a structure used to provide the controlled release of flood water from upstream into downstream area of a dam. As an important component of every dam, a spillway should be constructed strongly, reliably and efficiently to be used at any moment. Labyrinth and stepped spillways are presented as appropriate modifications to those spillways hardly capable of managing the maximum potential discharge. Owing to their nonlinear crests for a given width, labyrinth and stepped spillways have a larger discharge rate than linear- crest spillways at an identical height. Compared to other energy dissipaters, the combination of stepped and labyrinth spillways is known as a very strong energy dissipater. In the following part, the combination of these two structures and their dimensional change for increasing the water- energy dissipation are addressed. To conduct this study, an experimental flume with a 90- degree bend in the Islamic Azad University of Ahwaz was used. In total, 90 experiments were conducted on three different labyrinth- shape stepped spillway models with two different lengths, three different widths, and five different discharges. Analysis of the results showed a greater energy loss reduction in triangular rather than rectangular or trapezoidal labyrinth- shape stepped spillways. In addition, energy loss was greater in labyrinth spillways with two cycles than those with one cycle. Energy loss was increased by raising the Froude number from 0.05 to 0.1; in contrast, energy loss was decreased with increasing the Froude number from 0.1 to 1.0, which was due to the submergence of steps, a decrease in the roughness of steps and an increase in the intensity of aeration.

M. Majedi Asl, R. Daneshfaraz, J. Chabokpour, B. Ghorbani,
Volume 26, Issue 2 (9-2022)
Abstract

In the last decade, the use of gabion structures in hydraulic engineering for stabilizing the structure due to its high density and weight has become widespread. Also, the material's roughness and porosity cause it to be used in energy dissipation and drainage projects. This study evaluates the relative energy dissipation of gabion structures downstream of the ogee spillway in the conditions of a submerged hydraulic jump. The evaluated parameters in this study were Froude number, gabion height, gabion thickness, and material diameter. The experiments were performed with three average diameters of 1.5, 2.2, and 3 cm for rock material, three gabion heights of 10 and 20 cm, and Max. The end sill heights were 10, 20, and 30 cm. The operated discharges were regulated from 20 to 40 l/s. The results showed that by decreasing the average diameter of gabion aggregates, the amount of relative energy dissipation increases in all tested models, so that in gabion with a 1.5 cm average diameter of aggregates, the amount of energy dissipation increased by 3.6% in comparison with using the diameter of 3cm for the average diameter of the material. Increasing the height of the gabion to the extent that the flow is entirely inward can have up to 33% more relative energy dissipation than the gabion with a height of 10 cm. Also, by increasing the diameter of the gabion from 10 cm to 30 cm, relative energy dissipation increases up to 15%.

M. Sadeghi, T.o. Naeeni, F. Kilanehei, M. Galoie,
Volume 26, Issue 3 (12-2022)
Abstract

One of the most important hydraulic structures in a dam is the spillway. The design of the ogee spillway crest is based on the lower profile of the free-flow jet passing through the sharp-crested weir. When the downstream ogee spillway profile for the design discharge conforms to the lower profile of the free-jet passing through the sharp-crested weir, the pressure on that surface of the spillway becomes zero. In this study, the design of the ogee spillway was performed initially based on both two- and three-dimensional numerical modeling and then compared to the USBR standard method. The comparison of the final numerical and analytical results showed that although the vertical two-dimensional outputs were completely in agreement with the USBR standard profile, the three-dimensional profiles were different because in this model, guide walls were not considered. According to the analysis, if the flow entering the spillway is parallel to its axis, the lower profile of the sharp-edge spillway will be in complete agreement with the standard profile. Since, the design of guide wall geometry for ogee spillways is carried out using physical modeling which iteratively revises during a high-cost trial and error procedure, this research based on the case study of the spillway of Karun-3 dam has been tried using numerical modeling. The closest geometry to the geometry of the overflow guide wall was obtained which creates the least difference in transverse velocities. In this way, the design of guide walls can be done with more accuracy and low cost in comparison to physical modeling.

H. Noury Hasanabady, M.r. Kavianpour, A. Khosrojerdi, H. Babazadeh,
Volume 26, Issue 3 (12-2022)
Abstract

Using a rough bed for spillway compare to common dissipation methods such as stilling basins, stepped spillways, ski jumps, and bed elements may be more efficient to boost energy dissipation. In this research, the impact of spillway continuous bed roughness on energy dissipation was investigated. For this purpose, a non-dimensional relationship was developed, and by calibrating the numerical model based on the present experimental study, energy dissipation over the spillway for three slopes of 15, 22.5, and 30 (degree) with six roughness sizes of 0.0, 0.005, 0.0072, 0.0111, 0.016, and 0.022 (m) and three discharges of 170, 110, and 90 (lit/s) was investigated. Based on the present results, using a rough bed spillway will increase energy dissipation. Also, the ratio of energy lost per meter length of rough bed spillway to that of smooth spillway increases by chute slope. The results showed that the highest amount of relative energy consumption in the presence of roughness was related to the slope of 22.5 degrees and 22.2 mm for roughness (85%), and the lowest relative energy consumption was observed in the control state (25%). As a result of the present study, a natural rough bed without concrete coating has befitted in terms of environmental aspects, construction cost, and energy loss.

S. Abdollahi, A. Masjedi, M. Haidarnejad, A. Afros, M. Asadilor,
Volume 28, Issue 1 (5-2024)
Abstract

The use of structures has economic and safety advantages compared to other energy-consuming structures. In this research, to investigate the effect of the length of the sill of the flip bucket spillway on the scour downstream, experiments were conducted in a rectangular laboratory flume made of Plexiglas. The scouring downstream of the flip bucket spillway was investigated using a flip bucket spillway with four relative sill lengths and four threshold angles at four current intensities in the channel in this research. The results of this research showed that by the increase in the length of the sill in the flip bucket spillway, the energy consumption in the spillway increased and the scour depth downstream decreased. Also, increasing the relative length of the sill by 70% at the sill angle of 45 degrees, the scouring depth is reduced by about 88%. Also, a relationship was presented to determine the maximum depth of relative scour, and the correlation coefficient of the results obtained from this equation with the laboratory results is about 0.92.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb