Search published articles


Showing 35 results for Stability

A. Mirzai- Asl, B. Yazdi- Samadi Et.al.,
Volume 6, Issue 1 (4-2002)
Abstract

To evaluate cold resistance in wheat in laboratory and to find fast and effective methods of evaluation, nine wheat genotypes were studied in three experiments at the College of Agriculture, University of Tehran, Karaj, Iran. Genotypes consisted of four Iranian cultivars, Sabalan, Boulani, Khalij and Naz one Russian cultivar, Bezostaya and four Iranian accessions, 518, 583, 592 and 1255. In experiment 1, genotypes were grown in 10-cm diameter pots and after hardening in the open, their LT50s were determined in cold chamber. Their cytoplasmic membrane stability were also measured at -12°C through electrolyte leakage measurements. In experiment 2, the genotypes were grown in the field to practice hardening in winter then plant crowns were transferred to the lab and their LT50s were determined. Water content of crowns and leaves, sugar content of crowns, and plant erectness were also measured. In experiment 3, water content of crowns and leaves of the genotypes were measured in non-hardened plants.

Cytoplasmic membrane stability, crown water content and crown sugar content of plants showed significant correlations with LT50. Membrance stability had the highest correlation with LT50 (r=0.88). A high correlation was found between crown LT50 of plants taken from field and LT50 from the plants in the lab (r=0.98). It was found that plant water content reduces with cold hardening. Water content reduction was higher in resistant genotypes compared to susceptible ones. There was no significant correlation between crown and leaf water contents with LT50 in non-hardened plants. Bezostaya with LT50=-16.7°C was the most cold resistant genotype and accession 518 with LT50=-8.2°C was the most susceptible genotype, in this study.


R. Ramezani, A. Karbassi,
Volume 6, Issue 2 (7-2002)
Abstract

In this research, sunflower oil that was extracted and refined at Shiraz Narges Oil Company was packed in four different containers, namely, clear PET (polyethylene terephtalate), yellow PET, yellow HDPE (high density polyethylene), and metal can. Samples were kept at ambient temperature in the shelf exposed to normal light for a period of 1 year. Peroxide values were determined at 45-day intervals and TBA and anisidine values were measured at 0, 6 and 12-month periods. In order to determine the effect of artificial light, some samples in PET and HDPE containers were kept in a wooden box equiped with four (20 w) fluorescent lamps and the peroxide values of the samples were determined. Light transmittance properties of the packaging materials were measured using a spectrophotometer over a wavelength range of 350 nm to 800 nm. The data indicated that the greatest variations in peroxide, TBA and anisidine values were observed in samples in HDPE containers (significantly different at 5% level) kept under normal light and ambient temperature for a period of 1 year. It was also shown that the shelf life of sunflower oil in HDPE container was less than 6 months while for the other packaging materials it was more than one year. Samples exposed to artificial light indicated that the highest peroxide values belonged to samples in clear PET while those in yellow PET proved to have the lowest. Finally, PET container proved to be the most suitable container for sunflower oil followed by metal can. Yellow PET with the lowest transmittance percentage (350-800 nm) and peroxide value (when exposed to 20 w fluorescent lamp) could be substituted for clear PET. HDPE container proved to be unsatisfactory for sunflower oil due to high oxidation rate.
M. Shafaei Bajestan, M. Salimi Golshaikhi,
Volume 6, Issue 4 (1-2003)
Abstract

Downslope soil movement along riverbanks is a significant erosion process. Plant roots, particularly of woody vegetation, apparently stabilize soil on slopes because in most areas where the vegetation is removed, frequent bank failure occurs. Plant roots increase soil-shearing resistance both directly by mechanical reinforcement and indirectly through removal of pore water by transpiration. In this study, the effects of two plant species on the stability of the Karoon River has been investigated. To determine the In-situ shear strength of soil, a special device was designed and manufactured. This device is capable of measuring the shear strength of soil blocks as large as two cubic meters. In this study, twelve soil blocks, four blocks with roots of each tree and four blocks of root permitted were measured. Comparison of the soil shear strength with roots and root permitted soil shows that tree roots can significantly increase the shear strength of the soil. The amount of increase depends on the type of plant, the age of plant, the diameter of the roots and the percentage of roots in the block. In this study, the amount of increase varied between 20-66%. From the analysis of the data, two equations were developed to determine the increased shear strength.
F. Tajik,
Volume 8, Issue 1 (4-2004)
Abstract

Aggregation is an important temporal property of soil structure that is affected by intrinsic soil properties and also soil use and management. Aggregate stability has a strong influence on many processes in soil such as infiltration, aeration, strength, erosion, and soil’s ability to transmit liquids, solutes, gases, and heat. In this study, undisturbed soil specimens from 0-10 and 10-20 cm depths were sampled during summer 1999 from some regions in Iran including Golestan, Kermanshah, West Azerbaijan, and Mazendaran. After drying the samples in lab, the different sizes of aggregates were separated and the wet aggregate stability (WAS) and dispersible clay (DC) were determined on 2-2.8 mm aggregates according to Pojasok & Kay procedure (1990). The variance analysis of data showed significant differences among soils in all regions. The averages were compared by Duncan test to find the following order: Mazendaran > Golestan > Kermanshah > West Azerbaijan. Regression analysis of data of whole regions showed that the variability of aggregate stability was mainly explained by organic carbon content (R2=0.723 in P > 0.0001). The clay content had the greatest effect on aggregate stability in samples from Golestan while sand content had the greatest effect in samples from West Azerbaijan. The resulting equations from stepwise regression can be used to estimate aggregate stability from other soil variables in the study regions.
J. Lameie Heravani, N. Nemati, R. Bozorgipour, Z. Hosseini - Negad,
Volume 8, Issue 4 (1-2005)
Abstract

In order to find the high-yielding and adaptable cultivars in different environments, eight cotton genotypes including two early maturity hybrids were studied and compared with the Varamin cultivar as control in a randomized complete block design with four replications in six regions in 1997 and 1998. Using Barttlet test, some of the environments were eliminated from statistical analysis. Therefore, combined analysis of variance and other statistical calculations were carried out based on environment (Year×Location) on the assumption that environment was randomized and cultivars remained constant during the entire study. In combined analysis of variance, genotypic effect (in yield) was significant at 1% probability level. Combined analysis of variance also showed significant differences for the main effect of environment and genotype×environment intreaction at 1% probability level. To select the best genotype with a high and stable yield, parametric statistics of stability including type 1 stability (S2i,CVi), type II stability (bii2, w2i), type III stability (Sd2i) as well as non-parametric statistics such as mean of genotypic rank (R), standard deviation of rank (SDR), and simultaneous selection of parametric and nonparametric statistics for yield and stability (Ysi) were calculated. Overall, considering the important agronomic and technological characteristics of genotypes such as yield, earliness, span length, fiber strength, percentage of uniformity, and micronariae index, the hybrid Coker×Bulgar was selected as high-yielding and stable cultivar to be substituted for Varamin cultivar across the planting area.
M. Shahmohamadi, H. Dehghani, A. Yousefi,
Volume 9, Issue 1 (4-2005)
Abstract

To determine yield stability and to evaluate genotype interaction with environment interaction, 18 genotype of barley (Hordeum vulgare L.) and a control group were evaluated in a randomized complete block design with 4 replications in 3 successive years (1997-2000) at 10 research stations. Simple and combined analysis of variance revealed significant genetic differences between yield genotypes for grain yield. The results of combined analysis of variance indicated that genotypic and genotype were significant through interaction with environment. Therefore, different stability parameters including, environmental variance (S2i), environmental coefficient of variation (C.Vi), mean of variance of interaction (θi), interaction variance (θi), equivalence ( W2i), stability variance (σ2i), linear regression coefficient (bi, βi), mean of squares of deviation from regression (S2 di) and years within location MS for a genotype, averaging over all locations (MSy/l) were determined. Based on all the stability parameters, genotype 18 was known as the most stable one and genotypes 17 and 11 ranked lower. Genotype 5 with the highest yield was known to be the most adaptable one at fertile environments and is recommended for these locations. In addition, genotype 9 with good yield and low yield variance (1.58) and regression coefficient of less than 1 is suggested for unfertile locations.
R. Karimizadeh, H. Dehghani, Z. Dehghanpour,
Volume 10, Issue 3 (10-2006)
Abstract

To facilitate the interpretation of data from a genotype by environment experiment (GE), a cluster method is proposed to group genotypics according to their response to the environments especially when the GE interaction is large. The interaction structure of two-way classification data often can be identified if the data stratified into homogeneous subsets. In this paper four GE interaction cluster methods are proposed for this purpose. The stability of the 10 maize hybrids including 9 hybrids that were the best hybrids in yield trials and KSC 301 (check hybrid) were evaluated for 2 years in 4 locations of Iran. The randomized complete block design with 4 replications was conducted for each environment with different layouts. Simple analysis of variance revealed significant genetic differences between hybrids for grain yield. The results of combined analysis of variance indicated that genotype × year, genotype × location, and genotype × year × location interaction effects were significant (P < 0.01). Results also showed that models 1 and 3 and models 2 and 4 had the same responses. Hybrids 8 (K1263/1 × KE8212/12) with high yield stability in both models 1 and 3 were in one group and other hybrids were in another group. In models 2 and 4 results led to 3 groups: Group1 included hybrids 3, 7 and 9 that were very stable and had high yield group 2 included hybrid 1 alone that had medium stability and yield and group 3 included other hybrids that had low stability and yield.
G. Mohammadi Nejad, A. M. Rezai,
Volume 11, Issue 1 (4-2007)
Abstract

This research was conducted at Rsearch Farm of Isfahan University of Technology to evaluate yield stability of 9 Oat (Avena sativa L.) genotypes and Makooi barley, to determine the contribution of each environmental factor to genotype × environment interaction, and to find the most stable yield component in these genotypes. Four Canadian cultivars and 5 Turkish breeding lines were included in this experiment. Three dates of planting (12 Oct. 31 Oct. and 21 Nov.) and three sowing rates (300, 375 and 450 seed m2) were used as 6 environments. In each environment a randomized complete blocks design with 3 replications was used. Grain yield, No. of panicle/m2, No. of seed/ panicle, and 1000-grain weight were measured. Result of combined analysis of variance showed highly significant (P < 0.01) difference among genotypes for all the studied traits. Significante differences were observed among environments for all the characteristics except for 1000-grain weight. Grain yield and its components showed highly significant genotype × environment interaction ffects. The ratio of genotype × environment interaction sum of square to total sum of square for grain yield (22.37%) was higher than other traits. Stability analysis based on regression coefficient showed that Boyer cultivar and Line No.28 with nearly b=1 and more than average yields were the most stable genotypes. Pacer cultivar and Makooi Barley had specific adaptations with suitable and unsuitable environments, respcctively. Based on deviation mean square, Boyer cultivar was the most stable one among high yielding genotypes. Tai’s path analysis of genotype × environment interaction showed that V3 genotypic component (Seed weight) was the most effective component of stability and yield. Boyer with the highest V3 score was the highest yielding and stable genotype. According to environmtntal component of path analysis, fertilization stage and grain filling period were the most sensitive growth stages to environmental conditions. Therefor, it is not effective to evaluate genotype stability according to V2 component (seed/panicle). Finally, according to the result of this experiment Boyer with grain yield of 5.8 t/ha and stable response in all environments was selected as a suitable cultivar for breeding programs or introduction for commertial production.
H. Zali, S.h. Sabaghpour, E. Farshadfar, P. Pezeshkpour, M. Safikhani, R. Sarparast, A. Hashem Beygi,
Volume 11, Issue 42 (1-2008)
Abstract

  Presence of genotype × environment interaction necessitates evaluation of genotypes in a wide range of environments to find desirable genotypes. This study was carried out to determine the stability and adaptability of grain yield of 17 chickpea genotypes, in RCBD with four replications at Kermanshah, Lorestan, Ilam, Gachsaran and Gorgan Research Stations during two seasons (2003-2004). The genotype × environment interaction effect analyzed using the additive main effects and multiplicative interaction (AMMI) statistical model was significant at 1% level of probability. The sum of squares of G × E interaction was partitioned by AMMI model into four significant interaction principal component axes (IPCA). The first four principal component axes (IPCA 1, 2, 3 and 4) cumulatively contributed to 94% of total genotype by environment interaction. A biplot generated using genotypic and environmental scores of the first two AMMI components also showed that genotypes FLIP 97- 79, X95TH1 and FLIP 97- 114 were selected as stable genotypes, among which the genotype FLIP 97- 114 was outstanding for high yield stability.


M. Yoosefi, H. Shariatmadari, M.a. Hajabbasi,
Volume 11, Issue 42 (1-2008)
Abstract

  Adopting proper agricultural management and conserving soil organic matter are important components of sustainable agriculture. Soil organic matter content is a key attribute in soil quality. Labile organic matter pools can be considered as suitable indicators of soil quality that are very sensitive to changes in soil management practices. This research was carried out to investigate some organic carbon labile pools as an indicator evaluating the effects of different managements on some quality parameters of two calcareous soils. The study was conducted in 2 locations: 1- plots that receiving 0 (C1), 25 (C2), 50 (C3) and 100 (C4) Mg/ha of manure for five years successively with a cropping rotation of wheat –corn every year and plots under three cropping rotations (C5, C6 and C7) at Lavark experimental farm and 2- inquiry research station of Fozveh at different plots with three different cropping rotations (C8, C9 and C10) with a given cropping history recorded for the last 5 years. Soil samples were taken from the center of each plot and the depths of 0-5 cm and 5-15 cm. Their organic carbon, hot water soluble carbohydrate, particulate organic matter (POM), organic carbon and hot water soluble carbohydrate of POM, mean weight diameter of water stable aggregates were determined. Different managements consisting of different levels of manure and types of cropping rotation had significant effects on the soil characteristics measured. The greateast amount of carbohydrate and aggregate stability was obtained in the plots of 100 Mg/ha of manure in Lavak and in alfalfa plots in Fozveh station. Also, the results showed that aggregate stability has a better correlation with hot water soluble carbohydrate in comparison with other soil organic pools. Therefore, the carbohydrate extracted by hot water may be used as an index to assess the impacts of different agricultural management systems on soil quality.


R. Karimizadeh, M. Safikhani Nasimi, M. Mohammadi, F. Seyyedi, A.a. Mahmoodi, B. Rostami,
Volume 12, Issue 43 (4-2008)
Abstract

One of the applications of Non-Parametric methods is determination of genotypes rank in different environments, which is also used as a measuring stability. A stable genotype shows similar ranks across different environments and has minimum rank variance in different environments. Non-Parametric Stability Statistics require no statistical assumptions about the distribution of the phenotypic values and are easy to use. This study was carried out to determine the ranks of 10 Lentil genotypes (Lens culinaris Medikus) across ten environments in 2002-2004, using a randomized complete block design with four replications. Analysis of Thennarasu non-parametric statistics showed that genotypes 8 and 9 had high stability by NP(1) statistic and genotypes 9, 8 and 1 had stable yield in NP(2) method. Result of the NP(3) statistic was similar to NP(1) statistic. NP(4) statistic selected genotypes 9 and 1 as the most stable genotypes and ultimately NP(5) statistic introduced 9 and 1 genotypes as stable genotypes in this experiment. Also analysis of Nassar and Huhn non-parametric statistics revealed that genotypes 1 and 2 were most stable and well adapted across ten environments. In addition, it was concluded that plots obtained by both mean yield (kg ha-1) vs.Si(1) and mean yield (kg ha-1) vs. Si(2) values could enhance visual efficiency of selection based on genotype × environment interaction. According to these configurations, genotypes in section 1 can be considered as stable and well adapted to all environments, having general adaptable ability. For recognition a daptability,Si(1) and  Si(2) take preferred over other non-parametric statistics.
A. Khazaei, M.r. Mosaddeghi, A.a. Mahboubi,
Volume 12, Issue 44 (7-2008)
Abstract

Soil physical and chemical properties, and test conditions might affect soil structural stability. In this study, the effects of test conditions as well as intrinsic soil properties on structural stability were investigated for selected soils from Hamedan Province. Mean weight diameter (MWD) and tensile strength (Y) of aggregates were determined by wet sieving method and indirect Brazilian test, respectively. The soil samples were pre-wetted slowly to matric suction of 200 kPa before the wet sieving. The pre-wetted samples were wet-sieved for 5, 10 and 15 min in order to simulate different hydro-mechanical stresses imposed on soil structure. Tensile strength of soil aggregates were also measured at air-dry and 500 kPa matric suction conditions. Short duration shaking (i.e. 5 min) could effectively discriminate the Hamedan soils in terms of structural stability due to their fairly low aggregate stabilities. The soil organic matter content had the highest impact on MWD followed by both clay and CaCO3 content. The same was true for the Y values i.e. OM played the highest role in mechanical strength of soil aggregates. The highest coefficient of determination (R2) was obtained between Y and the intrinsic soil properties for matric suction of 500 kPa. The organic matter content had an important role in water and mechanically stable soil aggregates. The results indicated that short-duration wet sieving (i.e. 5 min) and measurements of tensile strength at matric suction of 500 kPa could be recommended for aggregate stability assessment in Hamedan soils
S.s. Pourdad, K. Alizadeh, R. Azizinegad, A. Shariati, M. Eskandari, M. Khiavi, E. Nabatee,
Volume 12, Issue 45 (10-2008)
Abstract

Safflower (Carthamus tinctoius L.) is an Iranian native crop that is adapted to different environmental conditions of this country. Sixteen safflower varieties/lines were spring-planted in 6 research stations including Sararood (Kermanshah), Maragheh, Ghamlo (Kordestan), Khodabandeh (Zanjan), Shirvan (North Khorasan)and Khohdasht (Lorestan) with and without drought stress conditions each in a RCBD with 3 replications. Some drought resistante indices including Mean of Productivity (MP), Geometric Mean of Productivity (GMP), Tolerance (TOL), Stress Tolerance Index (STI), Stress Susceptibility Index (SSI) for seed yield and genotypes Cell Membrane Stability (CMS) were calculated. Results showed that STI was the most appropriate index to identify drough resistant genotypes. Estimation of STI from mean of all stations revealed that Gila, CW-4440 and PI-537598 with high STI showed high seed yield in both stress and non-stress conditions. Caculation of STI standard deviation for these genotypes showed that Gila had less STI stability over the locations than other two genotypes so, CW-4440 and PI-537598 are more stable in drought stress resistance. Analysis of variance for cell membrane stability (CMS) of genotypes showed the significant differences in 1% level of probability between genotypes. S-541 had the highest and Kino-76 had the lowest CMS. There were significant and strong correlations between STI, MP and GMP with CMS namely, genotypes with more stable membrane having more drought resistance in field condition. So, cell membrance stability can be a useful and fast method to screen germplasm and identify drought resistant genotypes. Cluster analysis based on STI,MP,GMP, CMS and seed yield in both stress and non-stress conditions divided genotypes into 3 groupes. Results of clustering also identified S-541, Gila, CW-4440 and PI-537598 as 4 superior genotypes and confirmed the results of other methods.
S Yazdanpanah, P Arjmand, H Porazarang, M Mohanadi Jafari,
Volume 13, Issue 47 (4-2009)
Abstract

Antioxidant activity of pomegranate (Punica granatum) peel extract (PPE), extracted by either methanol or ethanol solvent, was studied by phosphomolybdenum method. Antioxidant activity of methanolic PPE was higher than the other. To evaluate heat stability of PPE in sunflower oil, the rancidity rate of the oil was compared at 90, 120, and 150ºC with those containing α-tocopherol and synthetic BHT, using rancimat method. A sample including 1000 ppm PPE had the highest induction period at 90,120 ,150ºC. The use of PPE had no adverse effect on sensory characteristics of potato chips as judged by the taste panel.
S Kamli, O Alishah, N Babaian,
Volume 13, Issue 48 (7-2009)
Abstract

To assess adaptability and stability of seed cotton yield in promising cotton genotypes, eight cultivars of cotton (Gukorova, Nazeli–84, Khordad, No: 200, Crema, Tabladila, Beli Izovar and Sepid), along with two controls (Sahel and Varamin), were studied in a completely randomized block design (RCBD) with four replications in six regions of Golestan and Mazandaran provinces in two successive years (2005 & 2006). Combined analysis of variance was done and means comparison of yield was conducted based on Duncan's multiple range test. Sepid, Beli Izovar, Varamin and Khordad varieties were superior for yield, earliness, boll weight and boll number, respectively. The result of combined variance analysis showed that, there are significant differences between genotypes and genotype × environment (G.E) interaction effect. Because of significant G.E interaction effect univariete stability parametric and non-parametric stability methods were used to determine genotype stability. The results of varied methods were different. The 43200 and Sepid cotton cultivars had a specific adaptation and were suitable cultivar for fertile lands in north of country, because of good reaction to production high yield. In contrast, Sahel cultivar with lowest yield had broad stability with non-fertile regions. Overall, three genotypes (Khordad, Tabladila and Gukorova) were determined with suitable stability and moderate yield (general stability) for most locations in north of country.
R Karimizade, B Vaezi, T Hoseyn Por, A Mehraban, H Ghojagh,
Volume 13, Issue 48 (7-2009)
Abstract

Multi-environment trial data are required to obtain stability performance parameters as selection tools for effective cultivar evaluation. The interrelationship among several stability parameters and their associations with mean yield, along with the repeatability of these parameters in consecutive years was the objective of this study. Barley yield data of 18 cultivars, proprietary of Dryland Agricultural Research Institute, evaluated in 12 locations over 2005-2007 in three locations of Iran was used for the combined analysis of variance in three datasets. I: Across locations in a single evaluation year (dataset A), II: Across locations in each of two single evaluation year (dataset B), III: Across all locations in three years (dataset C). For each dataset, cultivar phenotypic variance and other statistics were appropriately partitioned in its components. The interrelationship among the parameters and their associations with mean yield based on Spearman rank correlation was studied in each of the three single evaluation years (dataset A). Rank correlation coefficients were also used as estimates of the repeatability of these stability parameters across two year combinations (dataset B). The parameters 2 σi Shukla and 2 Wi were consistently highly correlated with each other but not with mean yield in all single and pair evaluation years. The parameters bi , 2 Si and CV were consistently highly correlated with each other but not with mean yield in all single and pair evaluation years. Result showed that Shukla variance, Wricke ecovalence, SIPC1 and ASV AMMI stability statistics have high repeatability. Thus it is suggested that more stability statistics especially nonparametric methods be used for determination of repeatability methods.
F. S. Moosavi , F. Raiesi ,
Volume 14, Issue 54 (1-2011)
Abstract

Although the crucial function of earthworms in improvement of soil physical properties is well -know, but very little is known of the interactive influence of earthworms and organic materials on soil properties such as soil aggregate stability, particularly in arid and semi-arid soils. The low organic matter content and the significant role of earthworms in improving physical properties of arid and semi-arid soils necessitate studying the interactive effects of organic materials and earthworms. Thus, the main objective of this study was to identify the interactive effects of anecic earthworm (Lumbricus terrestris L.) and various organic residues (including alfalfa, compost, mixture of alfalfa and compost and cow dung) on soil aggregate stability expressed as the Mean Weight Diameter (MWD), Geometric Mean Diameter (GMD) and Aggregation Ratio (AR), and furthermore soil Ca and Mg contents. The experiment consisted of a 2×5 factorial treatment organized in a completely randomized design with four replications under controlled greenhouse conditions, lasted for 150 days. Results showed that earthworm inoculation and organic materials addition alone increased significantly all the indices of soil aggregation and aggregate stability, and Ca and Mg contents. However, the combined use of earthworms and organic residues resulted in more stable aggregates. Results indicated that earthworm inoculation in the presence of organic materials resulted in 39, 58, 2, 67, 43 and 74% increases, respectively in MWD, AR, GMD, Ca, Mg and macroaggregates whereas microaggregates were reduced by 13.5% in earthworm-worked soils. We observed a significant relationship (R2=0.945) between soil Ca content and MWD, demonstrating that earthworms apparently excrete calcite that helps bonding clay particles and soil organic matter via cationic (Ca+2) bridging. In summary, results of this study show that the simultaneous applications of anecic earthworms and organic materials may considerably help in improving the structure of arid and semi-arid soils with low carbon level.
M. Ajami, F. Khormali,
Volume 15, Issue 57 (10-2011)
Abstract

Biological soil covers such as lichens have critical roles in soil stability and prevention of erosion. In order to study the effect of lichen biological covers on aggregate stability and soil conservation, loess hills covered with lichen and uncovered ones were selected in Northern Golestan Province. Five samples were taken from the depth 0 to 5 cm of both two areas for physico-chemical analyses. The undisturbed soil samples were taken for micromorphological studies, too. Analyses of soils revealed that soil organic carbon content increased markedly, compared to uncovered soils. Mean weight diameter also increased about three folds in soils covered with lichen. Fungal hyphae and polysaccharides excretions bind soil particles together and increase size of aggregates. Micromorphological study of thin sections showed that uncovered soils had a weak and massive structure, but soils covered with lichen had a crumb granular and also well -separated angular block and higher proportion of voids. Due to the effect of lichen on upward movement of calcium carbonate, crystallitic b-fabric appeared in the surface layer of covered soils and speckled b-fabric underneath. Excremental pedofeatures are the most common pedofeatures in the covered soils.
M. Nikpur, A. A. Mahboubi, M. R. Mosaddeghi, A. Safadoust,
Volume 15, Issue 58 (3-2012)
Abstract

The effects of soil intrinsic properties on soil structural stability were evaluated. Soil samples (33 series) with wide ranges of properties and structural stability were collected from Hamadan province. Two structural stability indices were used: mean weight diameter (MWD) using Yoder method and De Leenheer-De Boodt index (DDI). Wetting pre-treatments (fast wetting to saturation and slow wetting to a matric suction of 30 kPa) were applied before wetting. Linear and multiple regression relations of MWD and DDI with the soil intrinsic properties (organic matter, clay, fine clay, silt, sand, calcium carbonate, EC and pH) were assessed. Results showed that organic matter had the highest impact on the two mentioned indices. Following organic matter, clay, fine clay and calcium carbonate were ranked respectively one after another. Fast wetting caused a higher aggregate break-down, due to its destructive energy, air entrapment, and non-uniform swelling of the soil whereas slow wetting exhibited better differentiation of soils with low structural stability. The findings of this research demonstrated high agreement (R2>75%) between the MWD and DDI, recommended both to be used for evaluating of the aggregate stability in Hamedan province
N. Ghorbani Ghahfarokhi, Z. Kiani Salmi, F. Raiesi, Sh. Ghorbani Dashtaki,
Volume 17, Issue 63 (6-2013)
Abstract

Free and uncontrolled pasture grazing by animals may decrease soil aggregate stability through reductions in plant cover and subsequent soil organic C, and trampling. This could expose the soil surface layer to degradation and erosion. The objective of this study was to determine the influence of pasture management (free grazing, controlled grazing and long-term non-grazing regimes) on aggregate-size distribution and aggregation parameters by wet and dry sieving methods in two native pastures, protected areas in Chaharmahal va Bakhtiari province. The studied pastures were 1) SabzKouh pastures protected from grazing for 20 years, and 2) Boroujen pastures protected from grazing for 25 years. Soil samples were collected from 0-15 cm depth during the grazing season in summer 2008. Samples (finer than 2 mm) were analyzed for aggregate-size distribution and aggregation parameters by wet and dry sieving methods. Results showed that pasture management had a significant influence on aggregate-size distribution and aggregation parameters in the two areas. The two methods indicated that macro-aggregates in non-grazing and controlled grazing regimes were higher than those in free grazing regime, whereas in free grazing management micro-aggregates showed an opposite trend, and were greater compared with the other grazing regimes. Similarly, soil aggregate stability indices (i.e. mean weight diameter, aggregate geometric and ratio mean diameter) were all improved by non-grazing regimes, suggesting that animal grazing and trampling break down large soil aggregates due largely to compaction and reduced plant coverage. However, the extent to which grazing affects soil aggregation depends in large part on grazing intensity and duration, and the area involved.

Page 1 from 2    
First
Previous
1
 

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb