Search published articles


Showing 2 results for Stable Channel

H. Afzalimehr,
Volume 5, Issue 3 (10-2001)
Abstract

Over the past decades, numerous regime formulations, describing channel width, average flow depth and channel slope, have been proposed for gravel-bed rivers. Using the downstream hydraulic geometry measurements from 280 field channels, nine gravel-bed predictive formulations were compared. They are attributed to Bray, Chang, Hey and Thorne, Kellerhals, Neil, Parker and Simons, and Albertson. The comparison showed that the dominant discharge and the median grain size are not sufficient hydraulic variables to predict the channel geometry (width, depth, and especially channel slope). Seeking more complex formulations with the measured parameters, it was not possible to improve the existing formulations significantly without spurious influences of common variables.

 A second database is thus gathered from 19 laboratory-based boundary-layer measurements published in Kironoto and Graf (13) and Song et al. (19). In fact, the boundary-layer theory will respond to a fundamental question: are the existing available variables in literature not sufficient or the methods of their estimations are not appropriate? Based on the present study, the methods of their estimations should be changed. The second database allows proving the usefulness of the Shields parameter for the prediction of average flow depth and channel slope. Hence, using boundary-layer theory for prediction of Shields parameter and stable channel parameters is recommended.


H. Afzalimehr, M. Heidarpour, S. H. Farshi,
Volume 10, Issue 1 (4-2006)
Abstract

Suitable stable channel design and optimization of river geometry can reduce cost of projects. The regime theory provides the possibility of empirical and semi-empirical investigations of stable channel design in which erosion and sediment transport are in equilibrium. The objective of this research is an investigation and a comparison of the influence of uniform and non-uniform flows on the prediction of stable channel characteristics. The following empirical and semi-empirical (extremal hypothesis) equations were selected to study the effect of uniform flow: Lacey, Chital, Kondap and Garde, and Chang. Using 24 regime channels in USA, the statistical and graphical approaches were applied to compare and to evaluate the power of prediction of the selected equations. In order to investigate the effect of non-uniform flow structure on the stable channel characteristics, 21 measured velocity profiles in Gamasiab River were applied. Using the boundary-layer theory, shear velocity was computed for each profile. Accordingly, the estimated Shields parameter using the boundary-layer approach is the most effective parameter on the regime channel prediction. Simultaneous application of the non-uniform flow effect and the boundary-layer theory not only remove the risk of spurious correlation but also improve the estimation of stable channel characteristics.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb