Search published articles


Showing 4 results for Subsurface Drainage

J. Abedi Koupai, S. S. Eslamian, M. Khaleghi,
Volume 16, Issue 62 (3-2013)
Abstract

Crisis of quality and quantity of water resources is one of the most important problems in arid and semi-arid areas such as Iran. Wastewater treatment and reuse as a potential source of water can not only compensate for the water scarcity but also can prevent the hazardous pollutants from entering the groundwater and surface water resources. There are various methods to improve water quality, among which method of filtration is an effective and efficient method to remove elements. The most important issue for filter system is the selection of adsorbent materials. In this work, the tire chips were used as adsorbent. Column adsorption tests in a pilot system were conducted in two distinct steps using two types of water, including salt water and industrial effluents. Each test was conducted as a factorial experiment with three factors based on a completely randomized design with three replications. Three factors were studied including particle size (2-5 mm and 3-5 cm), filter thickness (10, 30 and 50 cm) and sorbent contact time with solution. The results showed that adsorption rate increased by increasing the thickness of the filter and sorbent contact time with solution. The best performance of reducing the salinity was observed in the treatment with 50 centimeter thickness and 24 contact hours. The salinity of this treatment was reduced by 20.3 percent (in the test with salt water) and 11.2 percent (in the test with industrial effluents). This filter reduced the heavy metals of lead, zinc and manganese up to 99, 72.1 and 41.4 percent, respectively. Also, the performance of millimeter and centimeter particles did not show a significant difference. Generally, the tire chips showed a proper performance to improve the water quality especially for industrial wastewater.
M. M. Matinzadeh, J. Abedi Koupai, H. Nozari, A. Sadeghi Lari, M. Shayannejad,
Volume 20, Issue 76 (8-2016)
Abstract

In this research, a comprehensive simulation model for water cycle and the nitrogen dynamics modeling including all the important processes involved in nitrogen transformations such as fertilizer dissolution, nitrification, denitrification, ammonium volatilization, mineralization, immobilization as well as all the important nitrogen transportation processes including nitrogen uptake by the plant, soil particles adsorption, upward flux, surface runoff losses and drain losses, was used for fertilizer management modeling in a sugarcane farmland in Imam Khomeini Agro-Industrial Company using a system dynamics approach. For evaluating the model the data collected from Imam Agro-Industrial Company equipped with a tile drainage system with shallow ground water and located in Khuzestan province, Iran, were used. The statistical analysis of the observed and simulated data showed that the RMSE for determining the accuracy of simulation of the nitrate and ammonium concentration in drainage water is 1.73 mg/L and 0.48 mg/L, respectively. The results indicated that there is good agreement between the observed and the simulated data. Nine scenarios of fertilization at different levels of urea fertilizer were modeled including one scenario of 400 kg/ha, two spilit scenarios of 350 kg/ha, two spilit scenarios of 325 kg/ha, two spilit scenarios of 300 kg/ha, one scenario of 280 kg/ha and one scenario of 210 kg/ha. Results of the modeling showed that the scenario of 210 kg/ha has the highest nitrogen use efficiency (52.3%) and the lowest nitrogen losses consisted of denitrification, ammonium volatilization and drainage losses (17.82, 7.16 and 92.59 kg/ha, respectively). The results revealed that increasing the consumption of urea fertilizer greater than 210 kg/ha increased the overall nitrogen losses and reduced the nitrogen use efficiency. Meanwhile, this model can be used for managing the fertilizer and controlling the nitrate and ammonium concentrations in the drainage water to prevent the environmental pollution. Also, the system dynamics approach was found as an effective technique for simulating the complex water-soil-plant-drainage system.


M. M. Matinzadeh, J. Abedi Koupai, A. Sadeghi-Lari, H. Nozari, M. Shayannejad,
Volume 23, Issue 3 (12-2019)
Abstract

Selection of drainage equation with acceptable accuracy has always been a challenge for designers to design subsurface drainage systems. In this research, seven steady state drainage equations were used for predicting daily and cumulative drainage rate on a farmland of sugarcane in Imam agro-industrial Company. These drainage equation included Hooghoudt, Ernst, Kirkham and Dagan that have been developed in the past and Mishra and Singh, Henine and Yousfi et al that recently developed. The statistical indices consist of P-value, RMSE, R2 and Percentage Error of estimating cumulative drainage rate were calculated for Hooghoudt equation 0.9501, 1.49 (mm/day), 0.80 and -0.19%, respectively. For Ernst equation 0.0001, 2.46 (mm/day), 0.34 and 16.98%, respectively. The result of performance of drainage equations revealed that Hooghoudt and Ernst equation were as the equations with the highest and lowest accuracy in predicting drainage rate, respectively. Also from the newly developed equations, the Yousfi et al equation was found with relatively well accuracy to predict the drainage rate. This equation was placed in second rank after Hooghoudt equation and other equations showed poor performance. Thus, with selection of the appropriate drainage rate, the Hooghoudt equation is suggested for designing of drain spacing in medium to heavy textured soils such as sugarcane agro-industrial.

E. Karamian, M. Navabian, M.h. Biglouei, M. Rabiei,
Volume 28, Issue 1 (5-2024)
Abstract

Cultivation of rapeseed as the second crop requires drainage systems in most of the paddy fields of the Guilan province. Mole drainage, as a low-cost and shallow drainage method that is suitable for rice cultivation conditions and easier to implement than pipe drainage, can be a solution in the development of second-crop cultivation. The present study was conducted to evaluate the drainage of mole drainage and nitrogen fertilizer management on the quantity and quality of drainage at Guilan University. In this regard, an experiment was conducted under two treatments including drainage and nitrogen fertilizer (i.e. traditional mole drainage and sand-filled mole drainage), and 180 and 240 kg of nitrogen fertilizer per hectare in three replications. After each rainfall during the plant growth period, water samples were taken from the drains, and parameters of electrical conductivity, pH, total suspended solids, total phosphorus, turbidity, concentrations of ammonium, chloride, nitrite, nitrate, and phosphate were measured. Also, the outflow from the drains and the water table level were measured by piezometers during the rain and after that. The results of the mean comparison of pH and total suspended solids showed that most of them were obtained with 7.49 and 281.25 mg/liter, respectively, in the mole drain filled with sand and the traditional mole drainage and 180 fertilizer treatment. The highest mean of electrical conductivity and turbidity was observed as 651 micro mohs/cm in the traditional mole drainage and 240 fertilizer treatment and with 67.76 NTU in the traditional mole drainage and 180 fertilizer treatment. The statistical analysis showed that the effect of drainage treatment on the amounts of ammonium, nitrite, nitrate, phosphate, and total phosphorus was not significant. The outflow from the traditional mole drainage was 49% lower than the sand-filled mole drainage. The traditional and sand-filled mole drains were able to drain excess water with average reaction coefficients of 0.8 and 0.83 per day during the growth period, respectively. Considering the speed of water discharge, drain discharge, and the main non-significance of qualitative parameters among drainage treatments, mole drainage filled with sand is recommended for the development of rapeseed cultivation in paddy fields.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb