Search published articles


Showing 22 results for Sunflower

Rahim Ebadi,
Volume 1, Issue 1 (4-1997)
Abstract

In this study, conducted in Isfahan region over a period of two years, six oilseed sunflower cultivars named Record, Venimek 8931, Chernianka, Zaria, Perdovik and Mehr hybrid were investigated in a split-split plot design. These cultivars were planted on March 29 and April 29, with and without the presence of pollinator insects. The results showed that the yield of different cultivars were significantly different (p<0.01). The planting date of March 29 caused a higher yield than that of April 29. Also the presence of pollinator insects during the bloom increased the amount of yield in all cultivars planted on both dates. Venimek and Record cultivars planted on March 29 with the presence of pollinator insects during the bloom produced the highest, i.e. an average of 3910 and 3821 kilograms of seeds per hectare and Chernianka with an average of 2944 kilograms of seeds per hectare had the lowest amount of seed. In this study, Record and Venimek cultivars in the first place and then Mehr hybrid planted on March 29 with the presence of pollinator insects during the bloom were better than the other cultivars in terms of attractiveness to honeybees, yield per hectare, seed hollowness percent, weight of 1000 seeds, germination percentage, speed of germination and the amount of oil production.
Hooman Razi, Mohammad Taghi Assad,
Volume 2, Issue 1 (4-1998)
Abstract

Two field experiments were conducted in 1996 at the experimental station, College of Agriculture, Shiraz University at Badjgah. Fourteen cultivars consisting of eight hybrids and six open pollinated cultivars were grown in two randomized complete block designs with four replications.

 The well-watered experiment received water when evaporation reached 65±5 mm from class A evaporation pan.

The water-limited experiment was irrigated in terms of 125±5mm evaporation from class A evaporation pan. Days to flowering, days to physiological maturity, head diameter, stem diameter, number of leaves per plant, plant height, number of filled seeds per head, 1000 seed weight, kernel percentage, unfilled seed percentage, seed yield, oil percentage, oil yield and harvest index were measured.

Most of the traits including seed yield and oil yield showed considerable genotypic and phenotypic variations. Highly significant differences were observed among cultivars. In normal and water stress conditions, the highest seed yield were obtained by Louc and Armavirsky cultivars, respectively. Water stress significantly decreased yield and its components. Furthermore, days to physiological maturity reduced in response to water deficit. However, oil percentage did not differ significantly. Drought resistance indexes were calculated in order to evaluate the response of each cultivar to water deficit. No association was found between yield potential and the stress susceptibility index, suggesting that drought resistance and high yield potential may be combined to improve sunflower cultivars. In addition, it was revealed that selection for height mean productivity and stress tolerance index will improve yield and drought tolerance simultaneously. Among cultivars that were used in this study, Armavirsky, besides having a relatively higher yield, was also drought tolerant.


M.r. Khajehpour, F. Seyedi,
Volume 4, Issue 2 (7-2000)
Abstract

Obtaining high seed and oil yields of sunflower requires coincidence of vegetative and reproductive stages of growth of the plant with suitable environmental conditions via selecting appropriate planting date. Since the suitable date of planting for sunflower cultivars under Isfahan environmental conditions was not determined, this experiment was conducted in 1996 at the Agricultural Research Station, Isfahan University of Technology. In this study, five dates of planting (April 27, May 12 and 27 and June 12 and 29) and three open pollinated sunflower cultivars (Record, Vnimik 8931 and Armavirec) were evaluated using a randomized complete block design with split-plot layout in three replications. Date of planting was considered as the main plot and cultivars were randomized in the sub-plots.

Number of seeds per head (SH), l000-seed weight (SW), seed oil percent (SOP) and, consequently, yields of oil (OY) and seed (SY) were significantly reduced as planting was delayed. Reduction in these traits were considered to be related to the coincidence of vegetative and reproductive growth stages with higher temperatures prevailing at later plantings. Vnimik 8931 had higher SH and SW, and thus produced higher SY. This cultivar had lower SOP than Record, but produced higher OY than Record due to its higher SY. Armavirec was ranked the least for the measured traits, except for its SH that was slightly higher than that of Record. SH was the most contributing trait to the increase in SY, and SY was the most determining trait for the increase in OY. Date of planting by cultivar interactions for SH, SY and OY were significant. Nevertheless, the highest amount of the measured traits were obtained with Vnimik 8931 at the first planting date.


M.r. Khajehpour, F. Seyedi,
Volume 5, Issue 2 (7-2001)
Abstract

Sensitivity of developmental stages of three sunflower cultivars to day length and temperature changes under field conditions were evaluated, and their development rates during various growth stages were modeled in a field experiment conducted in 1996 at the Agricultural Research Station, Isfahan University of Technology. Five dates of planting (April 27, May 12 and 27, and June 12 and 29) and three open pollinated sunflower cultivars (Record, Vnimik 8931 and Armavirec) were evaluated using a randomized complete block design with split-plot layout in three replications. Date of planting was considered to be the main plot and cultivars were randomized in sub-plots.

Number of days from planting (P) to head visible (HV) and P to first anther (FA) were significantly reduced with delay in planting as the result of increase in temperature during these periods. Number of days from P to physiological maturity (PM) was also significantly reduced with delay in P. This response, however, could not be explained by changes in temperature variables or day length. Number of days from HV to FA, in harmony with the partial stability of maximum and minimum temperatures during this period, was not affected by date of planting. Duration from FA to PM of the last planting date was significantly shorter than the other planting dates. This response was related to the persistence of the effect of high and stable maximum temperatures prevailing during HV to FA period of the last planting date. Armavirec was significantly earlier than Record and Vnimic 8931 for number of days from P to HV and from P to FA Cultivars showed significantly large differences for the FA to PM and P to PM durations. Armavirec was the earliest and Record was the latest cultivar. Based on the results obtained, it may be concluded that the cultivars under study were non-sensitive to photoperiod. Development rate (DR) of Armavirec responded linearly and DR of Record and Vnimic 8931 responded non-linearly to increases in temperature variables during P to HV and P to FA Development of Vnimic 8931 was faster than Record at high temperatures. DR of the cultivars decreased linearly during P to PM as day length increased. The relationship between DR and photoperiod could be used as a practical model for estimating P to PM duration of these sunflower cultivars.


R. Ramezani, A. Karbassi,
Volume 6, Issue 2 (7-2002)
Abstract

In this research, sunflower oil that was extracted and refined at Shiraz Narges Oil Company was packed in four different containers, namely, clear PET (polyethylene terephtalate), yellow PET, yellow HDPE (high density polyethylene), and metal can. Samples were kept at ambient temperature in the shelf exposed to normal light for a period of 1 year. Peroxide values were determined at 45-day intervals and TBA and anisidine values were measured at 0, 6 and 12-month periods. In order to determine the effect of artificial light, some samples in PET and HDPE containers were kept in a wooden box equiped with four (20 w) fluorescent lamps and the peroxide values of the samples were determined. Light transmittance properties of the packaging materials were measured using a spectrophotometer over a wavelength range of 350 nm to 800 nm. The data indicated that the greatest variations in peroxide, TBA and anisidine values were observed in samples in HDPE containers (significantly different at 5% level) kept under normal light and ambient temperature for a period of 1 year. It was also shown that the shelf life of sunflower oil in HDPE container was less than 6 months while for the other packaging materials it was more than one year. Samples exposed to artificial light indicated that the highest peroxide values belonged to samples in clear PET while those in yellow PET proved to have the lowest. Finally, PET container proved to be the most suitable container for sunflower oil followed by metal can. Yellow PET with the lowest transmittance percentage (350-800 nm) and peroxide value (when exposed to 20 w fluorescent lamp) could be substituted for clear PET. HDPE container proved to be unsatisfactory for sunflower oil due to high oxidation rate.
A. Mojiri, A. Arzani,
Volume 7, Issue 2 (7-2003)
Abstract

In order to study the effects of different levels of nitrogen fertilizer and plant density on grain yield and its components in sunflower, an experiment was conducted using 'Record' cultivar at the Research Farm of College of Agriculture, Isfahan University of Technology in 1996. Four levels of nitrogen (0, 75, 150 and 225 kg/ha) and four plant densities (65000, 75000, 85000 and 95000 plants/ha) were used in a split plot arranged in a randomized complete block design with three replications. Developmental stages, plant height, stem diameter, head diameter, number of head per m2, grain yield, biological yield, harvest index, 1000-grain weight, number of grains per head, grain oil percentage, oil yield and grain protein content were measured. The results indicated that N fertilizer caused an extension of the growth period and means of days to physiological maturity. It also increased plant height, stem diameter and head diameter. While increasing plant density had an incremental effect on plant height, it negatively affected stem diameter and head diameter. N fertilizer up to 150 kg/ha increased the grain yield and biological yield, whereas higher levels of N fertilizer decreased both. Plant density of 85000 plants per hectare was observed as a suitable plant density, whereas the higher plant density had a negative effect on grain yield. N fertilizer via increasing the number of grains per head, and plant density via increasing the number of heads per unit area and also decreasing the number of grains per head influenced the grain yield. One-thousand grain weight was not affected by neither N fertilizer nor plant density. Considering the superiority of 150 kg/ha of N fertilizer and plant density of 85000 plants/ha for grain yield and oil yield, it appears that they could be recommended for producing desirable yield in the regions similar to the study region.
D. Ataii, M. A. Sahari, M. Hamedi,
Volume 7, Issue 3 (10-2003)
Abstract

In this study, some physico-chemical characteristics of Iranian tea-seed oil (Lahijan variety) were compared with those of the oils from sunflower seed (Fars variety) and olive (Gilezeytoon variety) in terms of fatty acid contents, peroxide value, iodine value, saponification value, and oil shelf-life. Also the shelf-life of sunflower and olive oils containing 5% and 10% tea-seed oil were compared against control sample shelf-life. Tea-seed oil was found to be suitable and stable in nutritional properties. At a temeprature of 63oC, tea-seed and olive oils were found to have identical shelf-life values, which was higher than that of sunflower oil. Furthermore, the shelf-life of sunflower oil increased when mixed with tea-seed oil.
M. Alikhani, A. A. Alamooti, Gh. R. Ghorbani, N. Sadeghi,
Volume 9, Issue 3 (10-2005)
Abstract

Whole plant sunflower and sunflower without head were ensiled in plastic containers using additives in a 2×2×2×2 factorial arrangement in a completely randomized design with three replicates. Additives were molasses, urea (at 4 and 0.5 percent wet basis respectively), and a bacterial inoculant (Agros 6gr/ton of forage as manufacture’s instruction). Compared with silages without head, ensiling sunflower as whole plant resulted in lower pH, neutral detergent fiber (NDF) and ash versus higher concentrations of crude protein and ether extract (EE). No significant effect of seed was observed on lactic acid concentration and dry matter degradability (P<0.05). With the addition of molasses, the cell wall components and the EE concentrations reduced, but dry matter content increased. Highest degradability of dry matter was also observed in molasses-treated silages (average 58.04, P<0.007). With the addition of urea a significant increase was seen in CP content of either whole plant or headless silages (P<0.0001) with no effect on other fermentation characteristics. Bacterial inoculation of silages elevated the levels of lactic acid (2.81% DM) with more pronounced effect on headless than whole plant silages. Regardless of type of additives, butyric acid concentrations were ideally minimal (near to 2%) indicating least clostridial damage. The qualitative visual evaluation of the silage on the basis of scale of 1-20 for the smel, colour and structure of the silage and giving number to the mold damage on the basis of 1-10 placed all the treatment in an acceptable quality, although the mold damage was highest in silages without molasses. Results of this experiment indicated that better quality of silalges could be provided by adding molasses and ensiling whole plant sunflower. Improving quality of silages contained molasses might necesitate the additiion of a source of water-soluble carbohydrate at ensiling.
R. Hajiboland, M. K. Khosrowpanah,
Volume 9, Issue 4 (1-2006)
Abstract

Manganese toxicity occurs in many agricultural and natural ecosystems under the various soil conditions such as the nature of substrate, acidity, flooding or vicinity to the mining areas. The objective of this work was to study the effects of excess Mn in the growth medium on three important crop species, namely rice (Oryza sativa L. cv. T. Hashemi), maize (Zea mays L. cv. SC.704) and sunflower (Helianthus annuus L. Mehr). Plants were cultured in the hydroponic medium under controlled environmental conditions and treated with 0 (control), 25 50, 75 and 100 µM Mn for 12 days. Dry mass production, the effect of supplemental Mg and Ca on the toxicity expression, root respiration and K+ leakage from shoot and root tissues were studied under the Mn treatments. In order to study the effect of light intensity on the expression of toxicity symptoms, plants were cultured under the different light conditions, thereafter their growth and metal uptake and transport were studied. Sunflower plants treated with the 50 µM Mn and higher, showed dark-brown spots associated with the trichomes on the leaves and petioles. Maize plants developed interveinal chlorosis and any visual leaf symptoms was observed in rice. In all of the studied species, a great portion of the absorbed Mn was translocated into shoot, the highest transport was observed in sunflower and the lowest in maize. No significant correlation was observed between the expression of Mn toxicity and the accumulation rate of Mn. Growing under the low light intensity, in addition to the lowering biomass production, increased or decreased the toxicity effect depending on species. Mn-toxicity-induced root respiration was not associated with the differential response of species to Mn toxicity. In contrast the change of K+ leakage from shoot and root tissues was well correlated with the toxicity response of tested plants.
F A. Frouzandeh Shahraky, M. R. Khajehpour,
Volume 9, Issue 4 (1-2006)
Abstract

Under irrigation and in double-cropping system, a large amount of plant residue remains after harvest that along with the limited time for residue decomposition and complete seedbed preparation, necessitates reduced tillage and special residue management. In the present study, the effects of various seedbed preparation methods on vegetative growth, yield components and seed and oil yields of sunflower (Euroflor hybrid) were studied in a barley-sunflower cropping system during 2001 at the Agricultural Research Station, Isfahan University of Technology. Three residue management treatments (standing, partly removed and burned) along with five tillage systems (moldboard + disk chisel + disk disk moldboard and furrower as the minimum tillage) were laid out in a split-block design with three replications. Burning residue treatment significantly increased plant dry weight at various developmental stages and also head diameter. Number of seeds per head, 1000 seed weight, harvest index, and oil yield were non-significantly higher in the burned residue treatment. Seed yield was significantly higher in the burned and partly removed residue treatments. Moldboard + disk and chisel + disk treatments significantly produced higher plant dry weight at various developmental stages, head diameter and seed yield. Number of seeds per head, 1000 seed weight, harvest index, and oil yield were non-significantly higher in these treatments. Minimum tillage ranked the lowest for these traits. The results of this experiment indicate that chisel + disk treatment with the partly removed residues might be an appropriate seedbed preparation method in a barley-sunflower double planting under conditions similar to this experiment.
Gh. Saeidi,
Volume 11, Issue 1 (4-2007)
Abstract

Sunflower (Helianthus annuus L.) can have an important role in vegetable oil production. Also, appropriate soil fertility is necessary to obtaine higher seed yield and quality of the crop. This experiment was conducted to investigate the effect of fertilizer treatments of macro and micronutrients on seed yield and other agronomic traits in sunflower. The effects of thirteen fertilizer treatemts (as main factor) were investigated on agronomoic traits of two hybrid cultivars, "HiSun33" and "Euroflor" (as sub factor) in a randomized complete block design with three replications. The results showed that there was significant interaction between fertilizer treatments and cultivars for most of the traits and the effects of fertilizer treatments were dependent on the cultivar. Almost all of the fertilizer treatments of N, P, K, Fe, Zn and Mn either significantly or non-significantly decreased the means of head diameter, 1000-seed weight, seed yield/plant, seed yield and oil yield in Euroflor cultivar however, in HiSun33 cultivar, each of N, P, and K fertilizers had no significant effect on seed yield. Application of Zn and Mn fertilizer in soil or spraying them on plants had no significant effect on seed yield and yield components in HiSun33 cultivar however, application of Fe feritilizer (Sequestrene) significantly increased the seed yield of this cultivar and had no significant effect on its seed oil. In HiSun33, seed yield and oil content for treatments of control, NPK and NPK+Fe were 4946, 5155 and 7090 kg/ha and 40.72, 43.10 and 43.07 %, respectively. The effects of fertilizer treatments on oil concentration of seed were not significant, thus the variation of oil yield was due to the seed yield. The correlation coefficients and regression analysis showed that seed weight and head diameter were most important seed yield components,. In general, it seems that in a soil conditions like that of this experiment, Fe fertilizer can increase seed and oil yield in HiSun33 cultivar.
A. Karimi, M. Mazardalan, M. Homaeia, A. M. Liaghat, F. Raissi,
Volume 11, Issue 40 (7-2007)
Abstract

In Iran, fertilizers are mainly applied directly to soil. In such conditions, the yield and fertilizer use efficiency are usually low. The simultaneous application of fertilizers and irrigation water (fertigation) is an appropriate alternative to increase the efficiency of applied water and fertilizers. The objective of this study was to investigate the effect of various irrigation and fertilizer amounts on efficiency of applied fertilizers when used as fertigation in a Tape irrigation system. A field experiment was carried out with sunflower as a completely randomized design with 20 treatments and 3 replicates. The fertilizers were applied by fertigation. Four levels of the water (60, 80, 100 and 120% treatments I1 to I4) and five rates of the recommended fertilizers (0, 60, 80, 100, and 120% treatments F0 to F4) were applied.The recommended amounts consisted of 400 kg CO(NH2)2, 50 kg KCl, 30 kg FeSO4, 30 kg MnSO4, 50 kg ZnSO4, 30 kg CuSO4, and 30 kg H3BO3 per ha. Tape irrigation was used for every treatment. The results indicated that in fertigation method, there were significant differences ( P0.01) in fertilizer use efficiency (FUE) for the total dry matter and grain yield between treatments. The results showed that by increasing applied water, fertilizer use efficiency was increased and affected by fertilizers treatments. Thus due to higher availability of nutrients, fertilizer use efficiency increased. was Fertilizer use efficiency also decreased by increasing fertilizer rate. The results also demonstrated there were significant differences in all the treatments. The results showed that fertilizer use efficiency of K is higher than N and N is higher than P.
S. Abdi, A. Fayaz Moghadam, M. Ghadimzadeh,
Volume 11, Issue 40 (7-2007)
Abstract

To determine the effects of different intensities of leaf removal at different reproduction stages of sunflower on seed yield and oil percentage, and the most sensitive stages to defoliation, an experiment was carried out by split-spilt plot design in randomized complete block with 3 replications at research farm, College of Agric. Urmia University, in 2004. The main factor, sub factor and sub-sub factor in our experiment were: 1. two cultivars, Uroflor and Alstar, 2. defoliation at four reproduction stages, star shape of inflorescence (R2), pollination stage (R5), seed setting initiation (R6) and final period of seed setting (R7), and 3. four defoliation intensities ( 0% as an undefoliated control, 25%, 50% and 75% ). Seeding was accomplished on May 23. Average triple factor interactions verified that different defoliations at R2 stage have significantly reduced seed yield and oil percentage of both Uroflor and Alstar cultivars. Out of this reduction, 75 percent defoliation at R2 was the most, while at R5 and R6 stages 50 and 75 defoliation caused significant reduction on seed yield in comparison with control. At R7 stage different defoliations had no significant effect on seed yield of Uroflor cultivar, while, on Alstar cultivar, 75 percent defoliation at R7 stage caused significant difference in relation to control. Also average triple interaction among factors showed that none of defoliation percentages had significant effect on oil percentage. In view of the fact that, seed development and filling occurred after defoliation at R2 and R5 , the most variation resulted from defoliation of valued traits like number of filled seed per head and weight of 1000 seeds, observed at R2 and R5 stages and consequently reduced seed and oil yields. On the bases of this experiment it could be concluded that sunflower cultivation with losses of 50 and 75 percent will be economically unprofitable and it will be more desirable to replace it with any other suitable crop in the region.
Gh. A. Akbari, H. Jabbari, J. Daneshian, I. Alahdadi, N. Shahbazian,
Volume 12, Issue 45 (10-2008)
Abstract

In order to investigate the limited irrigation impact on physical characteristics of seed in nine sunflower hybrids, three 3-replicate field experiments RCBC were conducted under three irrigation regimes (irrigation after 60, 120 and 180 mm cumulative evaporation from class A evaporation pan, respectively) at the research field of Seed and Plant Improvement Institute in Karaj, Iran. The results showed that the Maximum length, width and seed diameter were obtained from irrigation after 60 mm cumulative evaporation from pan, and irrigations after 120 and 180 mm evaporation caused to decrease the length by 11% and 16%, width by 21% and 26% and seed diameter by 22% and 28%, respectively. There fore the seed diameter in comparison with width and seed length was most susceptible to limited irrigations levels. The Maximum length was seen in hybrid of A74×R95, and the maximum width, and seed diameter were observed in hybrids of Allstar. Also, A74×R95 under irrigations after 60 and 120 mm evaporation and Azargol under irrigation after 180 mm evaporation had the highest seed weight.
M Gorji, H Eshghizadeh, A Khosh Goftarmanesh, A Ashrafi, A Moalem, N Poursakhi, N Pourghasemian, A Miladi,
Volume 12, Issue 46 (1-2009)
Abstract

Iron deficiency is a worldwide nutritional constraint in agricultural lands especially in calcareous soils. Cultivation of crops tolerant to Fe-deficiency is an approach to combat Fe deficiency. The aim of this investigation was to evaluate Fe-efficiency of selected important crops in Iran. A completely randomized block design in triplicates was conducted at IUT research greenhouse in fall 2006. Sweet corn (Hybrid K.S.C. 404), grain corn (Hybrid S.C. 500), safflower (cvs. S3110, S-411), sunflower (Hybrid Hyson) and durum wheat (cv. Shuga) were grown in a nutrient solution at two Fe levels (1 and 10 µM Fe-EDTA). The results showed significant (P < 0.01) variation among the studied crops in Fe-efficiency. Corn hybrids were more sensitive to Fe deficiency (FeE = 26%) as compared to other studied crops, and the greatest reduction was observed in their shoot dry matter at 0.1 mM Fe- EDTA treatment. In contrast, the lowest decrease in root and shoot dry matter weight under Fe-deficient condition was found for durum wheat (FeE=94%). Comparing the calculated Fe-efficiency using different indices showed that Fe concentration and content in the whole plant, shoot and root had no relationship with crop tolerance to Fe deficiency.
M Babaeian, M Haydari, A Ghanbari,
Volume 12, Issue 46 (1-2009)
Abstract

In order to study the effects of foliar micronutrient application under water stress at three stages of growth on proline and carbohydrate concentrations, grain yield and yield components of sunflower (Alster cultivar), a field experiment in split plot design with three replications was conducted in 2007. Alster cultivar was considered under water stress at three stages of growth (heading, flowering and grain filling) as main plot and seven micronutrient treatments, Fe, Zn, Mn, Fe+Zn, Fe+Mn, Zn+Mn and Fe+Zn+Mn, as sub plots. Results showed, water stress at three stages of growth significantly decreased grain yield, biological yield, 1000 weight seeds, cap diameter and cap weight of sunflower (Alster cultivar). The impact of water stress was more pronounced when applied at grain filling. Use of foliar micronutrient increased grain yield in water stress. On the other hand, use of Mn foliar application had the highest positive effect on yield components and grain yield. Free proline and total soluble carbohydrate concentration were increased under water stress at all of the three stages of growth. The highest concentration of these two components was found on the flowering stage. Foliar micronutrient also increased accumulation of the two components.
M. Karimi Kakhaki , A. Sepehri,
Volume 13, Issue 50 (1-2010)
Abstract

In order to study the effect of deficit irrigation at reproductive growth stages on water use efficiency and drought tolerance of four sunflower cultivars, including Azargol, Allstar, Alison and Euroflor, an experiment was conducted during 2007 growing season at experimental field of Agricultural Faculty of Bu-Ali Sina University, Hamadan, Iran. The experiment was a split plot based on randomized complete block design with three replications. The irrigation levels included full irrigation, deficit irrigation at heading, deficit irrigation at flowering, deficit irrigation at seed filling, deficit irrigation at heading and seed filling and deficit irrigation at flowering and seed filling stages. The biological and economic yield (BY and EY), harvest index (HI), water used, water use efficiency (WUE) and water stress indexes were measured. The results indicated that the highest BY (11681.7 kg.ha-1), EY (4854.0 kg.ha-1) and HI (42%) were obtained from full irrigation treatment. The lowest negative effects in cultivars belonged to deficit irrigation at seed filling stage. Euroflor obtained the highest of these parameters with 10127.1 Kg.ha-1, 4081.5 Kg.ha-1 and 40% respectively. Highest WUE was related to twice cutoff of irrigation in flowering and seed formation stages and then without irrigation in seed formation stage by 1.09 and 0.96 Kg.m-3. Allstar and then Euroflor had highest WUE among sunflower cultivars by 1.01 and 0.94 Kg.m-3 respectively. Results also indicated that Euroflor was a tolerant cultivar and STI (Stress Tolerant Index) and GMP (Geometric Mean Productivity) were acceptable indexes for selection. Finally, deficit irrigation at seed formation stage had the lowest negative effect on yield and HI with suitable WUE. In addition, Euroflor showed the highest yield, drought tolerance and HI with suitable WUE.
E Fatahi Kiasari , A Fotovvat, A.r Astaraei , Gh Haghnia ,
Volume 14, Issue 51 (4-2010)
Abstract

The contamination of soils with lead is a major environmental problem throughout the world. Phytoextraction of heavy metals from contaminated soils has the prospect of being a more economic in situ alternative. Chemically enhanced phytoextraction has been proposed as an effective approach to remove heavy metals from contaminated soil through the use of high biomass plants. Using a pot experiment, the effects of the application of three rates of EDTA at 0, 1.5 and 3 mmol/kg soil and sulfuric acid at 0, 0.5 and 1 mmol/kg soil with two rates of Pb at 0 and 200 mmol.kg-1 on the uptake of Pb by corn (Zea mays L. single cross 704 var.), sunflower (Helianthus annuus L. ajili var.), and cotton (Gossypium hirsutum L. varamin var.) plants were studied. The results showed that EDTA was more effective than sulfuric acid in increasing the concentration of Pb in shoots and roots for all plants studied. The maximum amount with application of EDTA to soil for shoots of corn, sunflower, and cotton were 4.07, 6.49 and 31.33 times higher than the control, respectively. EDTA also enhanced Pb content of roots of corn, sunflower, and cotton 3.38, 1.63 and 1.09 times higher than the control, respectively. DTPA-Pb was higher in soil treated with EDTA than sulfuric acid. The application of EDTA also significantly increased shoot-to-root ratio of Pb in plants examined. The results of this study showed that corn was able to phytoextract more Pb than sunflower and cotton.
N. Najafi, S. Mardomi, Sh. Oustan,
Volume 15, Issue 58 (3-2012)
Abstract

The effects of waterlogging, sewage sludge and manure on the Fe, Mn, Zn, Cu, Pb and Cd uptake and concentrations in roots and shoots of sunflower (Helianthus annuus L.) were investigated in greenhouse conditions. A factorial experiment based on a completely randomized design with three replications including duration of waterlogging at five levels (0, 2, 4, 8, 22 days) and source and amount of organic fertilizer at five levels (0, 15 and 30 grams of both manure and sewage sludge per kg of soil) was conducted. The results showed that by increasing the duration of waterlogging, the Mn uptake and concentration in shoots and Mn concentration in roots increased but Mn uptake in roots did not change significantly. The uptake and concentration of Fe in shoots and Cd concentration in shoots and roots initially increased and then decreased after soil waterlogging, while Zn and Cu concentration of roots increased after an initial decrease. The effect of soil waterlogging on the Pb, Cu and Zn concentrations in shoots was not significant. By application of sewage sludge and manure the uptake and concentration of Fe, Mn, and Zn in shoots and Cu uptake in shoots increased but the uptake and concentration of Pb in shoots increased only by application of sewage sludge. The effect of source and amount of organic fertilizer on the Cd uptake and concentration in shoots, Cd concentration in roots and Cu concentration in shoots was not significant. By application of sewage sludge the root concentration of Fe, Mn, Cu and Zn increased but root concentration of Cd and Pb did not change significantly. The maximum uptake of heavy metals in shoots was obtained by application of 30 g sewage sludge/kg of soil. The effect of soil waterlogging on the heavy metals uptake and concentrations in the roots and shoots was dependent on the source and amount of organic fertilizer. Sunflower plant accumulated Fe, Mn, Zn, Cu, and Pb in roots while the Cd concentration in roots did not differ with shoots significantly.
M. B. Heyderianpour , A. M. Sameni, J. Sheikhi, N. Karimian, M. Zarei,
Volume 18, Issue 67 (6-2014)
Abstract

A study was conducted to evaluate the effect of vermicompost and nitrogen (N) on growth, nutrient concentration and uptake of N, phosphorus (P), potassium (K), iron (Fe), zinc (Zn), manganese (Mn), and copper (Cu) in sunflower shoots as a factorial experiment arranged in completely randomized design (CRD) with three replications under greenhouse conditions. Treatments included three levels of vermicompost (0, 2.5, and 5 % by w/w) and three N levels (0, 90, and 180 mg kg-1) as urea. Application of 2.5% vermicompost significantly increased the average fresh and dry weights, and uptake of K, Fe, Zn, Mn, and Cu of shoots as compared when no vermicompost was applied, but decreased Zn and Cu concentrations. Application of 90 mg N, increased fresh and dry weights, and concentration of N, Zn, and Mn, total uptake of N, P, K, Fe, Zn, Mn, and Cu in sunflower shoots, but decreased P concentration. Application of 180 mg N increased total N uptake than that of 90 mg N kg-1 treatment. Combination of 2.5% vermicompost with 90 mg N, significantly (p<0.05) increased dry matter yield of sunflower as compared to 2.5% vermicompost without N treatment

Page 1 from 2    
First
Previous
1
 

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb