Search published articles


Showing 5 results for Surface Drip

M. A. Ebrahimizade, A. M. Hassanli ,
Volume 12, Issue 44 (7-2008)
Abstract

Root depth is one of the main parameters affecting soil moisture availability held within the plant root zone. This study was conducted to evaluate the trend of corn root development during the growing season in different irrigation methods with two water qualities, and distribution of roots in soil profile. The experiment was a split plot design with three main treatments (subsurface drip(SSD), surface drip(SD) and furrow irrigation(FI)) and two sub main treatments (municipal effluent and fresh water) in two consecutive years conducted in Korbal plain, Fars province. Root monitoring was carried out with the observation of soil profile root depth measurement. Samples were taken during the growing season 16 times, each with a 7 day interval. Measurement of root weight in different soil layers was carried out using monoliths of soil washed with water pressure using 50 mesh sieves. Although the longest roots were observed in plots irrigated with SSD and the shortest in FI, the final root length was not significantly affected by irrigation methods and water qualities. In this research, a model showing the trend of root length average growth was developed and tested in the experiment conditions. The average final main root depth for all treatments was 77 cm. Irrigation volume using root depth monitoring could be reduced compared to linear model, Borg & Grimes and CROPWAT model for root depth estimation. Irrigation water on the base of soil moisture deficit within the root zone in each irrigation event could be reduced when the real root depth is considered compared with the conventional general models giving a final root depth. Results showed the total dry root weight in SSD was more than that in SD and FI methods. However, water quality did not show a significant effect on dry root weight. The most root concentration in SSD was measured in depth of 20-40 cm, while in SD and FI the most concentration was in surface layer (0-20 cm). In the SSD, the roots were distributed more evenly compared with SD and FI methods. The concentration of roots in all treatments below 65 cm was not significant.
H. Naghavi, M. Hosseini Nia, Sh. Karimi Googhari, M. Irandost,
Volume 16, Issue 61 (10-2012)
Abstract

Knowing about the way water is distributed in the soil is essential for designing and managing the Subsurface Drip Irrigation systems (SDI). Since carrying out experiments to recognize the form of moisture distribution in the soil is too complicated and time-consuming, using numerical simulations can be an efficient, effective substitute method to design these systems. One of these models is HYDRUS-2D, which is able to simulate the movement of water, heat and solute in saturated and unsaturated conditions in soil. This research aims to figure out the extent to which the HYDRUS-2D model is able to estimate wetting pattern in soil around a dripper. The simulations’ findings were compared to the data gathered from the field, including SDI system in different irrigation times, and 72 hours after irrigation. Moreover, the rates of error were measured for all points and distances from the dripper in all times of irrigation and also beyond that. The results indicated that the model can simulate the changes, trend similar to what happened in the soil profile. However, it estimated the rate of soil moisture with higher errors in those points in which the wetting took place, with the maximum error rate being RMSE= 0.05 per every 1.5 hours after irrigation starting point in the depth of 30 centimeters where dripper is placed. Also, with an increase in the irrigation time, and soil moisture evening which resulted from redistribution of moisture, the model resulted in better estimations. 72 hours after finishing the irrigation, the estimates were closer to real figures with an average error estimate of RMSE= 0.002.
A. Ahmadnejad, J. Abedi Koupai, F. Mousavi,
Volume 17, Issue 66 (2-2014)
Abstract

Sesame (Sesamum indicum L.) is one of the most important oilseed crops in the world. Drought stress is one of the environmental factors limiting sesame production. The effects of water deficiency can be reduced by inoculation of plant roots with mycorrhiza fungi. In this experiment, the objective was to determine the effects of different levels of water application (60, 80 and 100% of soil moisture depletion) using surface drip irrigation method and inoculation of plants with mycorrhiza on WUEag of sesame. The experiment was arranged using a factorial design based on randomized complete block design with three replications. The field experiment was conducted at the Agricultural Research Farm of Isfahan University of Technology in 2011. Results showed that the effect of irrigation regime on WUEag of seed yield was not significant. However, the effect of mycorrhiza on WUEag of seed yield was significant. The highest WUEag (0.74 kg/m3) was related to irrigation regime of 80% and mycorrhiza. The effect of irrigation regime and mycorrhiza on WUEag of oil yield were significant. The highest WUEag (0.43 kg/m3) was related to irrigation regime of 100% and mycorrhiza inoculation.
H. Shekofteh,
Volume 18, Issue 69 (12-2014)
Abstract

In order to study the effect of depth of drip placement in soil in subsurface drip irrigation, and fertilization time during irrigation events, on tuber yield of potato, an experiment was carried out in Jiroft area in 1389. This experiment was in a completely randomized block design with four replications, with depth placement of drip tape as the main plot, and fertilization time as the sub-plot. Results showed that depth placement of drip tape had a significant effect on tuber yield, plant height, number of stems, stem diameter and dry plant weight at 1% level, number of tubers in plant, and wet plant weight and stolen height at 5% level. Fertilization time had a significant effect on tuber yield, stem diameter, stem number in plant, and plant height at 1% level and on dry plant weight and plant tuber number at 5% level. But, it did not show any significant effect on other attributes. Also, interactional effects of treatments were significant on tuber yield per plant, stem diameter, plant height, and number of tubers at 1% level, and on dry plant weight at 5% level, but the effect on other traits was not significant. According to the statistical results, the highest yield was obtained from the depth of 15 cm and middle time of fertilization.


S. M. Mousavi, S. M. Mirlatifi, S. H. Tabatabaei,
Volume 19, Issue 71 (6-2015)
Abstract

The effects of water quality, installation depth and space of subsurface drip irrigation (SDI) laterals on yield and visual quality of turfgrass were investigated. A field experiment was conducted at the experimental farm of Shahrekord University. The experimental design was a Split-Split Plot with experimental arrangement of completely randomized block design with 16 treatments and three replications. Treatments included two types of water quality: well water (W) and treated wastewater (WW), two installation spaces of SDI laterals (45 and 60 cm) and four depths of placement of SDI laterals (15, 20, 25 and 30 cm). Turfgrass indices recorded during the experiment included height, dry mass, color, visual density and growth uniformity. The ANOVA results showed that interaction of irrigation water quality × lateral spacing × installation depth of SDI laterals is significant on the height, dry mass and growth uniformity of turfgrass. Irrigation with wastewater as compared to well water produced grass with significantly higher height and more dry weight. Treatments irrigated with well water had a better growth uniformity than those treatments irrigated with wastewater. Results indicated that there was no significant effect of experimental factors on turfgrass color. The interactional effect of lateral spacing and installation depth on the turfgrass density was significant. Increasing installation depth and laterals spacing caused a decrease in turf’s yield and visual quality.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb