Search published articles


Showing 2 results for Surface Runoff

P. Almasi, S. Soltani, M. Goodarzi, R. Modarres,
Volume 20, Issue 78 (1-2017)
Abstract

With regard to the confirmation of climate change in most regions of the world and its effects on different parts of the water cycle, knowledge of the status of water resources is necessary for proper management of resources and planning for the future. Hence many studies have been done in different areas with the aim of analyzing the impact of climate change on hydrological processes in the upcoming periods. In present research, the effect of climate change on surface runoff in Bazoft watershed has been studied. Bazoft watershed, located in North-West of Chahar Mahal & Bakhtiari province, has significant contribution in the production of water resources of the region due to its special topographical and geographical status. In this study, climatic model – HadCM3- and A2 and B2 emission scenarios have been used to assess uncertainty in forecasting climate change. For this purpose, a statistical model –SDSM- has been applied to downscale large- scale precipitation and temperature data and hydrological model –WetSpa- has been used to simulate runoff. After calibration of the hydrological model, downscaled precipitation and temperature data in near future (2020-2050) and far future (2070-2100) periods were introduced to WetSpa model and runoff was simulated for mentioned periods. Results of this study represent suitable performance of SDSM model in downscaling climatic data, especially minimum and maximum temperature. Also, performance evaluation of Wetspa model shows proper performance of this model for runoff simulation in Bazoft watershed, so that Nash- Sutcliffe efficiency during calibration and validation was 0.63 and 0.65, respectively. Moreover, assessing the amount of predicted runoff for future periods indicates an increase in annual runoff in the Bazoft watershed under both A2 and B2 scenarios.


J. Abedi Koupai, A.r. Vahabi,
Volume 27, Issue 2 (9-2023)
Abstract

Awareness of water resources status is essential for the proper management of resources and planning for the future due to the occurrence of climate change in most parts of the world and its impact on different parts of the water cycle. Hence, many studies have been carried out in different regions to analyze the effects of climate change on the hydrological process in the coming periods. The present study examined the effects of climate change on surface runoff using the Atmosphere-Ocean General Circulation Model (AOGCM) in Khomeini Shahr City. The maximum and minimum temperatures and precipitation of the upcoming period (2020-2049) were simulated using a weighted average of three models for each of the minimum and maximum temperatures and precipitation parameters based on the scenario A2 and B1 (pessimistic and optimistic states, respectively) of the AOGCM-AR4 models. The LARS-WG model was also used to measure the downscaling. The HEC-HMS was used to predict runoff. The effects of climate change in the coming period (2020-2049) compared with the observation period (1971-2000), in the A2 scenario, the minimum and maximum temperatures would increase by 1.1 and 1.6 Degrees Celsius, respectively, and the precipitation would decrease 17.8 percent. In the B1 scenario, the minimum and maximum temperatures would increase by 1.1 and 1.4 degrees Celsius, respectively, and the precipitation would decrease by 13 percent. The results of runoff were different in the six scenarios in the way the most runoff reduction is related to the scenario of fixed land use and scenario A2 (22.2% reduction), and the most increase is related to the scenario of 45% urban growth and scenario B1 (5.8% increase). So, according to increase urban texture in the future and consequently enhance the volume of runoff, this volume of runoff can be used to feed groundwater, irrigate gardens, and green space in the city.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb