Search published articles


Showing 5 results for Suspended Sediment

S. Baghbanpour* and S. M. Kashefipour, ,
Volume 16, Issue 61 (10-2012)
Abstract

Rivers as a main sources of supplying water for urban areas, agriculture and industry, are very important. This point reveals the necessity of the control, improvement and solving the problems of rivers, especially all problems relating to water quality. In this study, transport of the suspended sediment is numerically modeled. The Saint-Venant hydrodynamic equations and also advection-dispersion equation (ADE) are applied for modelling flow and suspended sediment transport. It is necessary to choose appropriate empirical and/or semi-empirical equation to accurately estimate the equilibrium suspended sediment discharge, as well as the appropriate equation describing longitudinal dispersion coefficient. In this research, 5 and 6 equations were applied in the ADE for estimating equilibrium suspended sediment discharge and longitudinal dispersion coefficient, respectively. 30 combinations of these equations were made and the final model was run for each of them separately. Comparison of the predicted suspended sediment concentrations and the corresponding measured values at the survey site, Abdelkhan Station, for the calibration and verification periods showed that the combination of the Van Rijn's equilibrium suspended sediment equation and the Fischer's longitudinal dispersion equation performed very well. The maximum percentages of errors in estimation of suspended sediment concentrations were 19.56% and 26.3% for the calibration and verification periods, respectively.
A. Talebi, Z. Akbari,
Volume 17, Issue 63 (6-2013)
Abstract

The real estimation of the volume of sediments carried by rivers in water projects is very important. In fact, achieving the most important ways to calculate sediment discharge has been considered as the objective of the most research projects. Among these methods, the machine learning methods such as decision trees model (that are based on the principles of learning) can be presented. Decision tree method is a hierarchical multi step method which is a recursive data collection technique to binary and smaller sub-divisions until the final analysis cannot be divided. Decision trees consider a priori known set of data and derive a decision tree from it. Then, tree can be used as the set of laws to predict unknown features. In this research, the efficiency of this technique for predicting the suspended sediments in Ilam dam basin has been investigated. To evaluate the accuracy of the methods (written by MATLAB software), statistical criteria such as R, BIAS, RMSE, r2 and MAE were computed. The results showed that based on all the statistical criteria, decision tree in comparison with the sediment rating curve had most consistency with the observed data. Meanwhile, the most important factors for creating tree in the model (that had high correlation with sediment data) are the corresponding discharge and daily rainfall.
N. Alizadeh, M. A. Ghorbani, S. Darbandi,
Volume 19, Issue 71 (6-2015)
Abstract

Information on suspended sediment variation in times of flood is important in management of water resources, particularly management of basins, and in investigation of the causes of erosion. The relationship between discharge and suspended sediment concentration during floods is not similar and homogeneous for different reasons such as precipitation variety, discharge rate and sources of sediment and production of hysteretic loops. In this study, the instantaneous values of suspended load were simulated using genetic programming and regression methods. By comparing the two models, Genetic programming model was selected as the better one with the mean square error and determination coefficient of 0.8 and 0.5, respectively. Then based on this model, loops of suspended hysteretic load were drawn for the six events recorded in the period of 1387-1383. This resulted in 4 linear and 2 clockwise hysteretic loops for the river suspended sediment. Identifying various hysteretic loops is effective in determination of relative contributions of processes to production and transfer of sediment including amount and intensity of precipitation, flow rate and previous moisture conditions of watershed. The results showed that the clockwise hysteretic loops occurred usually in high precipitation and discharge, and linear hysteretic loops in spring because of low intensity precipitation.


Z. Mollaee, J. Zahiri, S. Jalili, M. R. Ansari, A. Taghizadeh,
Volume 22, Issue 2 (9-2018)
Abstract

Spectral Reflectance of suspended sediment concentration (SSC) remotely sensed by satellite images is an alternative and economically efficient method to measure SSC in inland waters such as rivers and lakes, coastal waters, and oceans. This paper retrieved SSC from satellite remote sensing imagery using radial basis function networks (RBF). In-situ measurement of SSC, water flow data, as well as MODIS band 1 and band ratio of band 2 to 1 were the inputs of the RBF. A multi-regression method was also used to make a relationship between the in-situ data and the water reflectance data retrieved from MODIS bands. The results showed that RBF had the best SSC prediction error (RMSE=0.19), as compared to the multi-regression and sediment rating curve methods, with the RMSE of 0.29 and 0.21, respectively.

S. Jalali, K. Nosrati, Z. Fathi,
Volume 27, Issue 2 (9-2023)
Abstract

The geomorphic characteristics of the watersheds are interrelated and the temporal and spatial scale in the form of season and sub-basins affect the concentration of suspended sediment. One of the objectives of this study was to investigate the relationship between suspended sediment concentration and watershed characteristics of Kan River using principal components regression and to recognize the effect of seasons and sub-basins on sediment concentration. The concentration of suspended sediment during four rainfall-runoff events in three seasons and in sub-basins was measured and calculated. The sixteen physiographic and land use characteristics were determined in the sub-basins and the main factors were identified and the scores of each factor for each feature were calculated using principal component analysis (PCA). The results of variance analysis showed that the concentration of suspended sediment was significant in terms of time scale and spring had the highest rate of sedimentation. Redundancy analysis and canonical analysis on the properties that participate in the first factor (PC1) showed the characteristics of the percentage of erodible formation, relatively erodible formation, and percentage of free construction activity, respectively. Road (slope leveling) and stream length are the most essential attributes of sub-basins in the production and concentration of suspended sediment in the study area.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb