S. Azadi, H. Nozari, S. Marofi, B. Ghanbarian,
Volume 27, Issue 3 (12-2023)
One of the strategies for agricultural development is the optimal use of irrigation and drainage networks, which will lead to higher productivity and environmental protection. The present study used the system dynamics approach to develop a model for simulating the cultivated area of the Shahid Chamran irrigation and drainage network located in Khuzestan province by considering environmental issues. Limit test and sensitivity analysis were used for model validation. The results showed the proper performance of the model and the logical relationship between its parameters. Also, the cropping pattern of the network was determined in two modes of non-stepwise and stepwise changes to determine the optimal cultivated area of the Shahid Chamran network with environmental objectives and minimize the amount of salt from drains. The results showed that the amount of optimized output salt from the network has decreased in both non-stepwise and stepwise changes compared to the existing situation in the region. The total output salt in the current situation, from 2013 to 2017, was obtained at 2799, 2649, 2749, 2298, and 2004 tons.day-1, respectively, in the stepwise changes, are 2739, 2546, 2644, 2223, and 1952 tons.day-1, and finally, in the non-stepwise changes, are 2363, 2309, 2481, 2151, and 1912 tons.day-1. The results showed that the non-stepwise changes due to considered limitations have been more successful in reducing output salt than the stepwise changes. The analysis of the results showed the model's success in optimizing and achieving the desired goals. The results showed that the present model has good accuracy in simulating and optimizing the irrigation network, cropping pattern, and defining other scenarios.