Search published articles


Showing 2 results for Taleghan River

S. Razavizadeh, A. Kavian, M. Vafakhah,
Volume 18, Issue 68 (9-2014)
Abstract

  Prediction of sediment load transported by rivers is a crucial step in the management of rivers, reservoirs and hydraulic projects. In the present study, in order to predict the suspended sediment of Taleghan river by using artificial neural

network, and recognize the best ANN with the highest accuracy, 500 daily data series of flow discharge on the present day, flow discharge on the past day, flow depth and hydrograph condition (respectively with the average of 13.83 (m3/s), 15.42 (m3/s), 89.83 (cm) and -0.036) as input variables, and 500 daily data series of suspended sediment, as the output of the model were used. The data was related to the period of 1984-2005. 80 different neural networks were developed using different combinations of variables and also changing the number of hidden-layer neurons and threshold functions. The accuracy of the models was then compared by R2 and RMSE. Results showed that the neural network with 3-9-1 structure and input parameters of flow discharge on the present day, flow discharge on the past day and flow depth was superior (R2= 0.97 and RMSE= 0.068) compared to the other structures. The average of the observed data of sediment and that predicted by the optimal model (related to test step) were 1122.802 and 1184.924 (tons per day), respectively.
P. Hadipour Nicktarash, H. Ghodousi, K. Ebrahimi,
Volume 22, Issue 4 (3-2019)
Abstract

One of the factors leading to the contamination of water resources is human activity, producing waste materials. In this paper, the effects of contamination on the water quality of Taleghan River, was simulated using of Qual2k model and the seasonal changes were evaluated. The qualified data collected during two months, August (as the dry season) and February (as the wet season), were used in the modelling. The results showed that the dissolved oxygen change was in the range of 4.5-6.52 mg/L in August. However, it changed between 4.8-5.3 mg/l in February and this reduction in the wet season was due to the run off deposition and the seepages of farmland near the river. Furthermore, BOD in the wet season and the dry season changed by 6-31 and 10-26 mg/l, respectively. These changes were due to the sewage dilution in flow during the wet season. Evaluation of the pH values in wet and dry seasons also showed that water of the river was more alkaline in the wet season, which is due to the effect of non-point resources or the fertilizer entrance after farm land bleaching by rain. Evaluation of Taleghan river EC variation also showed these changes were not significant during the wet and dry seasons. Water temperature was altered by 3-100C and 19-250C, respectively, in February and August.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb