Showing 2 results for Tehran.
A Rahimi Khob, M Behbahani, M Jamshidi,
Volume 13, Issue 50 (1-2010)
Abstract
Daily solar radiation intercepted at the earth’s surface is an input required for water resources, environmental and agricultural studies. However, the measurement of this parameter can only be done in a few places. This has led researchers to develop a number of methods for estimating solar radiation based on frequently available meteorological records such as hours of sunshine or air temperature. In this study two empirical Angestrom and Hargreaves- Samani models, which are respectively based on air temperature and sunshine duration were calibrated and evaluated for estimating solar radiation in southeast of Tehran, Iran. Also, two neural networks models were presented using similar inputs and above-mentioned empirical models. The results showed that the both empirical and neural network models provided closer agreement with the measured values, but the models based on sunshine hours gave better estimates than the models based on air temperature. The neural network model based on sunshine hours with a R2 of 0.97 and a RMSE of 1.34 MJ m-2 d-1 provided the best results
A. Rahimikhoob, P. Saberi, S. M. Behbahani, M. H. Nazarifar,
Volume 15, Issue 56 (7-2011)
Abstract
In this study, the remote sensing statistical approach was used to determine the global solar radiation from NOAA-AVHRR satellite data in southeast of Tehran. This approach is based on the linear correlation between a satellite derived cloud index and the atmospheric transmission measured by the clearness index on the ground. A multiple linear regression model was also used to convert the five AVHRR data channels and extraterrestrial radiation to global solar radiation. The results of this study showed that multiple linear regression model estimated the solar radiation with an R2 of 0.93 and a root mean square error (RMSE) of 5.8 percent, which was better than the statistical approach.