Search published articles


Showing 44 results for Time

Sayed-Farhad Mousavi, Ahmad Mohammad-Zadeh, Ahmad Jalalian, Hossein Samadi-Boroujeni,
Volume 1, Issue 2 (10-1997)
Abstract

One of the most vital problems in the storage and utilization of surface waters for drinking, flood control, hydropower, and agricultural purposes is that of sedimentation in reservoirs and subsequent decline of dam lifetime. The useful lifetime of a dam is defined as the time necessary for approximately 80% of the volume of its initial capacity to be filled by sediments washed in by water. It is a function of the volume of the incoming sediments, specific weight of sediments, and reservoir trap efficiency. Trap efficiency depends on sediment characteristics, life, shape, and rule curves of the reservoir as well as on the capacity-inflow ratio. It is the purpose of the present study to calculate sediment trap efficiency of small dams and also to determine the relationship(s) among the effective parameters in the Chaharmahal and Bakhtiary region. For our purposes, 14 small earth dams (with heights of less than 15 m and capacities of about 1 MCM) were selected around Shahrekord and Borougen. Since no data were available on the erosion and sedimentation for these dams, the MPSIAC empirical model was used to estimate the incoming sediment to the dams' reservoirs. The model considers nine factors effective on erosion and sediment production in each watershed. These factors were analyzed for the watershed of each dam under study and the annual sediment yield was calculated. The amount of sediments retained in the reservoirs as a result of the working life of the dams was estimated by reservoir surveying. The trap efficiency was calculated for all the reservoirs under study. The results obtained revealed that the trap efficiencies for these small dams ranged from 10.4 to 68.9%. New curves were developed and suggested for the trap efficiency of small dams based on these results.
Masoud Ezzat-Ahmadi, Hamdollah Kazemi, Mohammad Reza Shakiba, Mostafa Valizadeh,
Volume 2, Issue 2 (7-1998)
Abstract

Effect of different times and levels of nitrogen fertilizer application on growth and grain yield of spring wheat cultivar “Ghods” was studied during 1993-1994 growing season at Karkadj, Agricultural Experiment Station, College of Agriculture, University of Tabriz, using a split plot design with three replications. Main plots were assigned to five levels of N fertilizers (0, 40, 80, 120 and 160 kg/ha) and subplots to five times of applications [all of N fertilizer at planting (T0) 1/2 at planting + 1/2 during tillering stage (T1), 1/2 at planting + 1/2 during heading stage (T2), 1/3 at planting + 1/3 during tillering and 1/3 at heading stages (T3) and 1/4 at planting + 1/4 at tillering + 1/4 at stem elongation and 1/4 at heading (T4)]. Results showed that different levels of N applications affected grain yield and biological yield significantly, while the effect of split application and also N levels × times of application interaction on these two traits were non-significant. Growth stages of wheat were not significantly affected by different N Levels and times of application. Dry matter accumulation, leaf area index, and crop growth rate, in response to growing degree days during growing season, increased when higher levels of N fertilizer were applied. Leaf area index and crop growth rate initially increased up to anthesis and then decreased. Crop growth rate decreased to zero level at soft dough stage and then became negative. Variations in relative growth rate and net assimilation rate, in relation to growing degree days, decreased when different levels of N fertilizer were applied at early part of growing season it was maximum while at later growth stages decreased and finally became negative, Times of N application and level × time interaction during growing season did not affect the growth indices significantly.
Abolfazl Faraji, Aghafakhr Mirlohi,
Volume 2, Issue 3 (10-1998)
Abstract

In order to study the effects of rate and time of nitrogen application on vegetative characters, i.e., yield and yield components of rice (Zayandeh-rood variety), an experiment was conducted at Isfahan University of Technology research farm during summer 1996. Four N rates including (60, 90, 120 and 150 KgN/ha) and four splitting form (1- all N applied before transplanting 2- 1/3 N applied before transplanting, 1/3 at the beginning of tillering and 1/3 at the emergence of first panicle in 50% hills 3- 1/2 at the beginning of tillering and 1/2 at the emergence of first panicle in 50% hills 4- 1/3 at the beginning of tillering and 2/3 at the emergence of first panicle in 50% hills) were evaluated in a factorial experiment which was arranged in a randomized complete block design with 3 replications. Plant height, number of tillers per unit area and days to heading and maturity increased with an increase in the rate of fertilizer application. Grain yield and number of panicles per square meter increased when the N rate was raised to 120 Kg N/ha, while application of 150 Kg N/ha resulted in the reduction of grain yield and number of panicles. Nitrogen rate increases did not have any significant effect on number of grains per panicle. The grain weight did not follow any particular trend at different application rates, but harvest index and percentage of filled grains were decreased as the N rate increased. The percentage of nitrogen content of plant was increased as a result of higher N - rate at heading and harvest times. Treatments containing base application of nitrogen resulted in an increase in plant height, number of tillers, plant dry matter, grain yield and number of panicles per square meter, although it caused a reduction in harvest index. The number of grains per panicle and grain weight did not follow any particular trend under the influence of time of application, although plant nitrogen content increased with a delay in time of fertilizer application.
G. Fathi, M. Mojedam, S. A. Siadat, G. Noor Mohammadi,
Volume 5, Issue 4 (1-2002)
Abstract

Effects of different levels of nitrogen fertilizer and cutting time of forage on grain and forage yield of barley (Hordeum vulgare L.) Karoon cultivar was studied during 1995-1996 at Ramin Agricultural Research and Educational Center, University of Shahid Chamran, Ahwas, by using a split plot design in randomized complete block with 4 replications. Main plots were assigned to five levels of N fertilizer (45, 90, 135, 180 and 225 kg N/ha) as urea fertilizer and subplots to three cutting times (no cutting, cutting forage at early stem elongation without removing reproductive meristem and cutting forage in the middle of stem elongation with cut reproductive meristem).

The effects of N rates and cutting time on grain yield were significant. Maximum yield was obtained with 281.6 g/m2 when crop plants received 90 kg N/ha and cutting time at early stem elongation and minimum yield was obtained (158.2 g/m2) with 45 kg N/ha and cutting forage in the middle of stem elongation. Interactive effect of levels of N and cutting time on spike number per m2, grain number in spike and grain weight were significant. Among yield components, spike number and grain weight showed the highest sensitivity to both. Different levels of N increased forage protein concentration and protein yield significantly, but delay in cutting time decreased protein concentration and increased protein yield. Results indicated that high levels of N could not compensate for the delay in cutting time of forage for grain yield. It was concluded that application of 90 kg N/ha and cutting time in early stem elongation was preferable for grain and forage production as compared to other treatments.


S. Maghsoud Lou, A. Golian, F. Eftekhar Shahroudi, M. Nassiri Mahallati, H. Kermanshahi,
Volume 7, Issue 3 (10-2003)
Abstract

An experiment with a 33 factorial arrangement in a completely randomized design with 450 day-old broilers was conducted to study the effect of energy level and time of change from starter to finisher diets on performance and economic aspects of broilers. Broiler chickens were fed at three levels of dietary energy (2800, 3000, and 3200 KcalME/Kg) from 1-42 days of age. Starter and finisher diets were changed at 16, 21, and 26 days of age and then finisher diets were fed up to 42 days of age. The effect of diet energy and changing time from starter to finisher diets on body weight and feed conversion at 26 days of age were significant (P<0.01). By increasing energy level and changing time from starter to finisher diets, at this age, body weight increased and feed conversion ratio decreased. Energy conversion decreased by decreasing the levels of energy content of diet and increasing time of change from starter to finisher diets (P<0.01). At 42 days of age, the effects of diet energy and changing time from starter to finisher diets did not show any significant effects on feed and energy conversion in contrast, body weight at this age increased significantly as a result of increasing time of change from starter to finisher diets (P<0.05). From 1-42 days of age, the interaction between diet energy and changing time from starter to finisher diets on feed and energy conversion was significant (P<0.05). The results from this study suggest that increasing diet energy and changing time from starter to finisher diets for producing broilers with less than 2 kg will improve their general performance.
R. Amiri Chaijan, M. H. Khosh-Taghaza,
Volume 7, Issue 4 (1-2004)
Abstract

Traditional paddy dryer systems in Iran cause considerable losses in rice production due to non-uniform drying. In order to decrease the amount of kernel fissuring and to increase the drying rate, fluidized bed method was applied in this study for rough rice drying at temperatures higher than normal. An experimental dryer was used for drying the samples. The drying experiments were set up to find kernel fissuring percentage and the drying times under three conditions: fixed, minimum, and full fluidized bed conditions at temperatures of 40, 60 and 80oC. Results showed that the amount of kernel fissuring, at minimum fluidization compared to fixed bed condition, decreased 57%, 68% and 75% at temperatures of 40, 60 and 80oC, respectively. This reduction at full fluidization compared to fixed bed condition, at the above temperatures, was 40%, 54% and 65%. The minimum fluidization method took the lowest and the fixed bed method took the highest drying time. It was concluded that the minimum fluidization drying method had the lowest fissuring and drying times at all experimental temperatures.
N. Mehrdad, M. Alikhani, G. R. Ghorbani,
Volume 8, Issue 2 (7-2004)
Abstract

In a completely randomized design with a factorial arrangement (3× 5× 3), three fistulated sheep with an average body weight of 47.5 ± 2.5 kg were used to determine the effect of cutting and growing stages (no bloom , early bloom and full bloom) on chemical composition and In situ degradability of alfalfa (Medicago sativa). Nylon bags (50 µm pore size) were filled with 3.5 g of each sample and suspended in the rumen before morning feeding and incubated for seven different times (0, 2, 4, 8, 16, 24 and 48 h). The results showed that alfalfa at no bloom stage had the highest crude protein and the lowest crude fiber content. The third – cut alfalfa had the highest degradability of dry matter and organic matter. Extent of degradability depended on crude fiber and solubility. During growth stage, the protein, soluble material and degradability levels decreased while crude fiber, neutral detergent insoluble crude protein (NDICP), and acid detergent insoluble crude protein (ADICP) increased. The amount of ADICP was an estimate of unavailable crude protein in the rumen. Although the rate of organic matter degradation was maximum in full bloom, no significant difference was observed between the three stages of growth. Effective degradability (ED) of crude protein was significantly different among stages the growth (p<0.05). Effective dry matter degradability (EDDM) with a passage rate of 6%/h was significantly higher in the third cutting of alfalfa. The results of this study showed that first cutting and full bloom alfalfa had the lowest and fifth cutting and no bloom had the highest CP levels. The effect of cutting and growing stages on degradability parameters was variable and did not allow any firm conclusions to be made.
L. Mosharaf, A. Ghasemi,
Volume 8, Issue 2 (7-2004)
Abstract

In this study the effects of four quince harvesting times (at 10 - day intervals), in 2 years on fruit quality during cold storage for 5 months at 0˚C and 85% Relative Humidity were investigated. Fruits were picked from orchards in Flavargan region of Isfahan. Every month, pH, sugar content, acidity, TSS, tissue firmness of fruits were determined. Variance analysis shows that the effect of year on TSS, sugar content, and pectin was siginificant (α =1%) as well as on tissue firmness (α =5%). Harvesting time effect was only significanrt on sugar content while storage time showed a significant effect on TSS, Sugar content and acidity of fruits. Year and harvesting time interaction effect on sugar content and TSS was significant ( α=1%). Year and storage time interaction effect on pH, pectin and tissue firmness was significant while no significant effect on measured parameter was observed for harvesting time and storage time interaction. Simultaneous effect of year, Storage time and harvesting time on pH, pectin and tissue firmness was significant ( α=1%). Meanwhile average analysis by Duncan test showed that different harvesting times had no significant effect on measured parameters except on fruit sugar content. Acidty , pH., and TSS values were changing significantly durig storage. Sugar content of 4th and 5th months of storage was maximum. Pectin content, acidity and tissue firmness showed the maximum level at the first harvesting time while pH was maximum at the 2nd harvesting time. It was concluded that 4th harvesting time (181 days after flowering period) and 5 months of cold storage are the optimum conditions to keep the quality quince.
H. Shirgholami, B. Ghahraman,
Volume 9, Issue 1 (4-2005)
Abstract

A number of researches have indicated a gradual increase in mean temperature throughout the world. Yet, there are some reports on the reduction of annual mean temperature. In this research we investigated a long-term trend of annual mean temperature in 34 synoptic stations in Iran (2 stations in cold and humid climates 14 in humid and moderate climates, 11 in Steppe climate and 7 in desert climate - following Kopen climatic division) with a minimum statistical record of 30 years by applying the minimum square-error and Man-Kendall methods (Wald-Wolfowitz method had a different result). The results confirmed a positive trend in 59% stations, while 41 % of the stations were negative for the whole time-horizon of data. Considering the significance level, 3 zones of positive, negative, and no trends for annual mean temperature were detected in Iran. However, it was hard to define a specific spatial theme for such a division. By taking another approach, we proceeded with a shared statistical time period of 1968-1998 for all stations. In this case, 68% of the stations showed a positive trend, while the remaining 32% was negative. There were some shifts in direction from one trend to another in some of the stations in the study, yet no well-defined spatial structure was reported. In contrast, at 5% level of significance, 44, 15 and 41 percentages of the stations demonstrated positive, negative, and no trend for annual mean temperature, respectively. In general the behavior was different for different climates and no specific pattern was found. So, despite the fact that some stations did not show significant trends, one may hypothesize that more regions in future will experience higher temperature values and their positive trends would be a clue for future warming.
M. R.edalatian, S. A. Mortazavi, M. Hamedi, M. Mazaheri,
Volume 9, Issue 4 (1-2006)
Abstract

Production and consumption of whole tomato and/or its products(tomato paste, tomato juice, ketchup, etc) is incearsed all over the world. Annual production of tomato in Iran is about 3.4 million tons (MT), part of that is processed in the tomato paste factorise, which are mostly located in khorasan province. Since tomato variety has a determinant effect on the physico-chemical and organo leptical properties/quality of tomato and its products, an investigation was performed to evaluate the impact of variety and storage time of four tomato varieties, Cal.j.n.3, Early Urbana Y, Early Urbana 111and Peto early C.H which were selected according to a national project and were monitored according to their brix, pH, Acidity, Sugar and Salt contents, total and non soluble solids. Results indicated that Early Urbana 111 and Peto early C.H contained the highest amounts of soluble solids along with the highest pH. Also it was evidenced that these varieties were the most stable varieties as the least compositional changes was seen in them.
M. T. Dastorani,
Volume 11, Issue 40 (7-2007)
Abstract

The potential of artificial neural network models for simulating the hydrologic behaviour of catchments is presented in this paper. The main purpose is the modeling of river flow in a multi-gauging station catchment and real time prediction of peak flow downstream. The study area covers the Upper Derwent River catchment located in River Trent basin. The river flow has been predicted (at Whatstandwell gauging station) using upstream measured data. Three types of ANN were used for this application: Multi-layer perceptron, Recurrent and Time lag recurrent neural networks. Data with different lengths (1 month, 6 months and 3 years) have been used, and flow with 3, 6, 9 and 12 hours lead-time has been predicted. In general, although ANN shows a good capability to model river flow and predict downstream discharge by using only upstream flow data, however, the type of ANN as well as the characteristics of the training data was found as very important factors affecting the efficiency of the results.
R. Hojat Ansari, M. Hasanpour Asil, A. Hatamzadeh, B. Rabiei, S.h. Roofigari Haghighat,
Volume 12, Issue 43 (4-2008)
Abstract

Variations in theaflavin and thearubigin content during fermentation and the effects of these variations on brightness and total color in black tea were evaluated at the Tea Research Center in Lahijan in the year 2004.  Percentages of theaflavin (TF), thearubigin (TR), total color and brightness were determined in two clones 100 and in the natural Chinese hybrid during flushing in the months of June, August and October and different fermentation time (30, 60, 90, 120 and 150 minutes). It is evident from the results obtained that apart from genetic differences in the clones under study, changes in climatic conditions during different periods of flushing and fermentation time can to a great extent influence the amount of TF, TR, total color and brightness in black tea. Results obtained also indicated significant interacting effects of clones, different flushing and fermentation times on the quality-determining characteristics of black tea. No significant correlations were found between TR and brightness however, significant correlations were found between other characteristics studied at the 1% probability level. On the basis of regression analysis with fermentation time (independent variable) and each of the characteristics studied (dependent variable), linear relationships were detected between fermentation time and brightness and TF content. Multi-variable regression analysis between brightness (dependent variable) and TF and TR (independent variables) showed that more than 56% of variations in brightness in black tea was related to TF and TR. Also multi-variable regression analysis between total color (dependent variable) and TF and TR (independent variable) indicated that more than 43% of variations in total color in black tea can be attributed to TF and TR percentages
M. Ghanbari , M. Shahedi,
Volume 12, Issue 43 (4-2008)
Abstract

Baking is obviously one of the most important stages of bread production. Baking time and oven temperature have greatest effects on bread quality. The aim of this study was to investigate the effect of baking time and temperature on bread quality and its shelf life. In this study, the effect of three rates of oven temperature (top and under bread surface) and baking time levels on bread quality and its shelf life was investigated. Baking temperature and time were 300 and 280 °C for 3 minutes and 20 seconds, 300 and 350 °C for 2 minutes and 30 seconds and 350 and 380 °C for 2 minutes respectively. Soluble starch and staling factors of the samples were measured. The data was statistically analyzed by complete randomized design and comparison was made between the means via Duncan,s multiple range test at 5% level. The results showed that the bread baked in various time–temperature conditions were different in moisture content. The bread baked at lower temperature and longer time had the lowest moisture. Also, the result showed that the amount of soluble starch increased by increasing the baking time and decreasing the baking temperature. The bread baked in various baking conditions showed significant differences in staling rates. Lower baking time and higher baking temperature caused the lowest bread staling rates.
F Parsa, R Azadi Gonbad, A Moghadam Dorodkhani,
Volume 12, Issue 46 (1-2009)
Abstract

Every year lots of waste will produce in factories from black tea. These waste will remain unusable or through away but only little amount will be used in industry. In this survey, important components of tea dust and three kinds common tea wastes was studied from 1382 to 1383. Four compounds (caffeine, protein, fiber and fluor) were extracted and measured separately from four samples of wastes (dust, fluff, footstalk and stalk) as experimental component. In three periods of plucking (spring, summery and autumn) from two kinds of arrangement (from curve and flat bushes). The experiment were conducted in four experimental components with replications and were analyzed with Duncan method. The results indicated that effects all of wastes, plucking periods and two kinds of arrangement (except effect of that on amount of caffeine) were significant on caffeine, protein, fiber and fluor whereas maximum amounts of caffeine, fluor and protein in dust but maximum amounts of fiber was in stalk and Effect of plucking period indicated maximum amount of fluor and caffeine in summer plucking and maximum amount of fiber and protein in autumn plucking and effect of plots indicated maximum amount of fiber in flat plot and maximum amount of fluor and protein in curve plot.
Sh Rofigari Haghighat, S Sabori Helestani, K Cheraghi, S.a.t Shokrgozar,
Volume 13, Issue 47 (4-2009)
Abstract

Changes in black tea quality were studied for three subsequent years and in different times of plucking (spring, summer and autumn) in the form of two leaves and a bud. Percentage of waste, total sensory scores, total soluble solid, caffeine, theaflavin, thearobigin, total color and brightness were evaluated in black tea. The data were analyzed in split plot design based on randomized complete blocks. In hybrid tea, quality parameters in second time of plucking (summer) were high. In clone 100, total soluble solid and caffeine were in summer 1.85, 0.18 and 6.14, 0.79 more than spring and autumn tea, respectively. Total sensory scores, thearobigin and total color were more in spring and summer than autumn. The waste in autumn was more than spring and summer. Hybrid tea and clone 100 were significantly different in quality characters but not in waste amount (P<0.05).
B Bakhtiari, A.m Liaghat, A Khalili, M.j Kjanjani,
Volume 13, Issue 50 (1-2010)
Abstract

In this study, the Penman-Monteith methods proposed by the Food and Agriculture Organization (FAO-56) and American Society of Civil Engineers (ASCE) were used for hourly ETo estimation under the semiarid climate of Kerman, Iran. Hourly ETo estimations obtained from the proposed methods were compared with measured ETo values by using a large weighing electronic lysimeter during April to September 2005 (totally 3352 hourly ETo data cases). Simple linear regression and statistical factors such as root mean square error and index of agreement were used for estimated and observed value comparison. The average of measured and estimated hourly ETo values using these methods for integrated data were 0.28 and 0.23 mm hr-1, respectively, which means that average estimated ETo values were approximately 21 percent less than the measured ETo values. This analysis was also performed for hourly data of each month during the study period. The results showed that FAO-56 Penman-Monteith underestimated ETo values by 18.4, 19.3, 26.3, 20.4, 21.4 and 22.1 percent for April to September, respectively, when compared with the measured values. Similarly, the ASCE Penman-Monteith underestimated ETo values by 17, 19.6, 18.4, 18.2, 19.7 and 20.9 percent for the same period, respectively, when compared with the lysimetric data. Finally, a set of regression equation for transformation of the estimated hourly data into the measured hourly ETo values has been presented for each month.
H Asadi , H.r Moradi, A.r Telvari, S.h.r Sadeghi ,
Volume 14, Issue 53 (10-2010)
Abstract

The Clark method is one of the most applicable techniques for development of instantaneous unit hydrograph whose efficacy depends upon the accuracy in estimating storage coefficient. The present study was conducted in Kasilian watershed in Mazandaran Province to determine the efficiency of developed hydrograph using Clark's method and to compare the Muskingum storage coefficients obtained through graphical, Clark, Linsley, Mitchell, Johnstone-Cross and Eaton methods. To this aim, the time-area histogram of the study watershed was initially developed. The 3h-unit hydrograph was then derived using the data collected in Sangedeh climatological and Valikbon hydrometric stations. The efficiency of Clark’s instantaneous unit hydrograph developed based on 6 methods for calculation of Muskingum storage coefficient was ultimately compared with the observed average 3h-unit hydrograph of the study area. The results of the study revealed that the Clark’s instantaneous unit hydrograph obtained from graphical method for estimation of storage coefficient with estimation error of less than 33.33% and efficiency coefficient of 83% could suitably simulate different components of the observed average unit hydrograph for the study watershed.
M. Rabiee, M. Kavoosi, P. Tousi Kehal,
Volume 15, Issue 58 (3-2012)
Abstract

To determine the proper nitrogen fertilizer rates and its application times for achieving high grain and oil yields of rapeseed cultivar, Hyola 401, a research was carried out in paddy fields of Rice Research Institute of Iran in Rasht during two cropping seasons. A factorial experiment was conducted in a completely randomized block design with three replications. The experimental factors were pure nitrogen fertilizer rate at five levels of 0, 60, 120, 180 and 240 Kg ha-1 and fertilizer application times at five levels of all fertilizer at planting 1/3 at planting + 2/3 in stem elongation 1/3 at planting + 1/3 in stem elongation + 1/3 before flowering 1/3 in 3-4 leaf stages + 1/3 in stem elongation +1/3 before flowering 1/4 at planting + 1/4 in 3-4 leaf stages + 1/4 in stem elongation + 1/4 before flowering. The results of statistical analyses showed that from amony nitrogen rates, application of 240 Kg N ha-1 and 180 Kg N ha-1 with average production of 2505 Kg ha-1 and 2596 Kg ha-1 respectively showed the highest grain yield and were in the same group. of Nitrogen application times, application of 1/3 at planting + 1/3 in stem elongation + 1/3 before flowering had the highest grain and oil yields with average of 2155.3 Kg ha-1 and 9865 Kg ha-1, respectively. Maximum oil percentage was observed in control treatment (without N-fertilizer application) and the highest oil yield was obtained for nitrogen rates of 180 and 240 Kg ha-1. Also, the highest growth period was observed for the treatment of 240 Kg nitrogen with 206.3 days. The results showed that nonsignificant difference exists between the nitrogen rates of 180 and 240 Kg ha-1 in grain and oil yields. Therefore, the rate of 180 Kg ha-1 is recomended due to less fertilizer consumption and prevention of destructive effect on the environment
S. Dodangeh, J. Abedi Koupai, S. A. Gohari,
Volume 16, Issue 59 (4-2012)
Abstract

Due to the important role of climatic parameters such as radiation, temperature, precipitation and evaporation rate in water resources management, this study employed time series modeling to forecast climatic parameters. After normality test of the parameters, nonparametric Mann-Kendall test was used in order to do trend analysis of data at P-value<0.05. Relative humidity and evaporation (with significant trend, -0.348 and -0.42 cm, respectively), as well as air temperature, wind speed, and sunshine were selected for time series modeling. Considering the Autocorrelation function (ACF) and Partial Autocorrelation function (PACF) and trend of data, appropriate models were fitted. The significance of the parameters of the selected models was examined by SE and t statistics, and both stationarity and invertibility conditions of Autoregressive (AR) and Moving average (MA) were also tested. Then, model calibration was carried out using Kolmogorov-Smirnov, Anderson- Darling and Rayan-Joiner. The selected ARIMA models are ARIMA(0,0,11)*(0,0,1), ARIMA(2,0,4)*(1,1,0), ARIMA(4,0,0)*(0,1,1), ARIMA (1,0,1)*(0,1,1), ARIMA (1,0,0)*(0,1,1) for relative humidity, evaporation, air temperature, wind speed and sunshine, respectively. The fitted models were then used to forecast the parameters. Finally, trend analysis of forecasted data was done in order to investigate the climate change. This study emphasizes efficiency of time series modeling in water resources studies in order to forecast climatic parameters.
M. Khodagholi, R. Saboohi, Z. Eskandari,
Volume 18, Issue 67 (6-2014)
Abstract

The geographical location of Isfahan province has led the province to be at risk of drought. One of the ways to mitigate drought is evaluation and monitoring of drought based on indices that can determine its intensity and permanence in each region. In this research, for drought and trend analysis standard precipitation index and Mann-Kendall test were used, respectively. Also, monthly precipitation time series of Isfahan province was applied to forecast drought from 1970 to 2009. For this purpose, Box and Jenkins modeling approach (1976) was used which has three main steps, namely model identification, parameter estimation, goodness of fit test or time independency and normal test of residual. The results showed that most of the stations in Isfahan province were faced with severe drought in the year 2000 and this situation was repeated one more time in 2008. Also, the results brought forth multiplicative models in all the stations. ARIMA (1,0,0) (0,1,1) showed the highest correlations between control and forecast data in Isfahan, Meime and Ardestan stations, and the model ARIMA (0,0,1) (0,1,1) displayed the highest correlation between control and forecasted data in Naein, Freydoonshahr, Khansar and Natanz. These models were selected as the best models through which the amount of precipitation was predicted till 2015. The trend of forecast data across Isfahan province showed that in most months the trend is not significant.

Page 1 from 3    
First
Previous
1
 

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb