Search published articles


Showing 3 results for Trace Element

J A. Aboutalebi, E. Tafazoli, B. Kholdebarin, N. Karimian,
Volume 9, Issue 4 (1-2006)
Abstract

The Effect of various NaCl levels on the shoot content of trace elements, in the seedlings of five citrus species namely: Bakraei (Citrus reteculata X C. limetta), Volkamer lemon(C. volkameriana), Sour orange(C. aurantium), Sweet lime (C. limetta) and Mexican lime(C. aurantifolia), were studied in a glasshouse, by a randomized complete block design with factorial arrangement and four replications. One-year old seedlings of each species were grown in the pots, containing native soil (pH=8.2) and irrigated with water supplemented with 0(control), 20, 40 and 60 mM NaCl. At the end of experiment, the amount of Fe, Zn, Mn, Cu, Cl and B in shoots were determined. The amount of trace elements varied among the species even in the control plants (no salt). Salinity had different effects on the shoot content of trace elements. Salinity reduced Fe content in the shoot of all species except in Bakraii and sweet lime and increased the amount of Zn in the shoot of all species except in Bakraii. The Mn content was reduced in the all species but increased in sour orange. Salinity reduced the amount of Cu in the shoot of volkamerina but had no effect in the other species. The amount of Cl increased in the shoot of all species with salinity. Boron content in the shoot of all species except in sour orange, increased with low salinity level but decreased with increased salinity levels. However in sour orange, salinity in the all levels decreased the amount of B in the shoot of seedlings.
M Nael , A Jalalian1 , H Khademi, M Kalbasi, F Sotohian, R Schulin,
Volume 14, Issue 51 (4-2010)
Abstract

Geologic and pedologic controls are the main factors determining the behavior of elements in natural soil environments. In order to assess the role of these factors on content and distribution of selected major and trace elements in soil, six parent materials including: phyllite, tonalite, periditite, dolerite, shale and limestone were selected in Fuman-Masule region. Soil genesis and development of representive residual pedons were studied for each parent material and the total content of Si, Al, Ca, Mg, Fe, Ti, Mn, Ni, Co, Cr, Cu, Pb, V and Zn were compared among them. Enrichment/depletion patters of trace elements were assessed using Ti as reference element. Generally, Cr, Ni, Co and V are highest in soils derived from peridotite (984, 285, 53 and 204 mg/kg, respectively) and dolerite (1023, 176, 39 and 185 mg/kg, respectively). In the same way, Si and Al exhibit the features of parent materials in the sense that the lowest content was observed in soils developed on peridotite, dolerite and limestone. Zinc and Pb are highest in soils derived from shale (106 and 27 mg/kg, respectively). In a given pedon, different elements exhibited different enrichment/depletion patterns moreover, a given element may behave differently not only in soils with different parent materials but also, in some cases, in soils developed on similar lithology. Lead, Zn, Cu and Mn have been generally enriched in most pedons, except in some acidic and strongly leached soils, whereas Co, Cr, Fe, Ni and V have been leached, especially from Dystrudepts and Eutrudepts. The latter elements, however, showed enrichment trend in Hapludalfs and Argiudolls parallel to the development of illuvial B horizons.
M. Sharifi, M. Afyuni, A. H. Khoshgoftarmanesh,
Volume 15, Issue 56 (7-2011)
Abstract

Micronutrients such as Fe and Zn in adequate level are essential for plant growth cycle and impose a vital role in increasing yields of most agricultural crops. Using organic wastes such as sewage sludge, compost and manure is a proper practice for returning organic matter and some nutrients into the soil, particularly in arid and semi-arid regions. The objective of this study was to determine the effects of sewage sludge, compost and cow manure on availability of Fe and Zn in soil and their uptakes by corn, alfalfa and targetes flower. A completely randomized design with three treatments (sewage sludge, compost and cow manure at 25 Mg/ha) was used. Application of sewage sludge, compost and cow manure significantly increased availabile Fe and Zn of the soil. The application of organic wastes increased the dry matter yield of the plants. Fe and Zn concentration of plants shoots in organic amendments treatments were significantly greater than blank. The highest mean concentration of Fe in plant tissues was obtained in the cow manure and the highest mean concentration of Zn in plant tissues was obtained in the compost treatment.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb