Showing 6 results for Unconventional Water
J. Abedi Koupai, S. S. Eslamian, M. Khaleghi,
Volume 16, Issue 62 (3-2013)
Abstract
Crisis of quality and quantity of water resources is one of the most important problems in arid and semi-arid areas such as Iran. Wastewater treatment and reuse as a potential source of water can not only compensate for the water scarcity but also can prevent the hazardous pollutants from entering the groundwater and surface water resources. There are various methods to improve water quality, among which method of filtration is an effective and efficient method to remove elements. The most important issue for filter system is the selection of adsorbent materials. In this work, the tire chips were used as adsorbent. Column adsorption tests in a pilot system were conducted in two distinct steps using two types of water, including salt water and industrial effluents. Each test was conducted as a factorial experiment with three factors based on a completely randomized design with three replications. Three factors were studied including particle size (2-5 mm and 3-5 cm), filter thickness (10, 30 and 50 cm) and sorbent contact time with solution. The results showed that adsorption rate increased by increasing the thickness of the filter and sorbent contact time with solution. The best performance of reducing the salinity was observed in the treatment with 50 centimeter thickness and 24 contact hours. The salinity of this treatment was reduced by 20.3 percent (in the test with salt water) and 11.2 percent (in the test with industrial effluents). This filter reduced the heavy metals of lead, zinc and manganese up to 99, 72.1 and 41.4 percent, respectively. Also, the performance of millimeter and centimeter particles did not show a significant difference. Generally, the tire chips showed a proper performance to improve the water quality especially for industrial wastewater.
Y. Choopan, A. Khashei Siuki,
Volume 23, Issue 1 (6-2019)
Abstract
Due to the availability of limited water resources in the country, it is necessary to use unconventional water. On the other hand, application of minerals such as Zeolite (Zo) is necessary to simulate plant growth and reduce the harmful effects of wastewater. The present study was conducted to investigate the effect of irrigation by wastewater with Zo on cotton (Gossypium herbaceum) based on a randomized complete block design with factorial arrangement in Torbat Heydarieh, 2014. For this purpose, irrigation water treatment at 2 levels (I1: irrigation with normal water and I2: irrigation with effluent) and Zeolite (Zo) treatment at 2 levels (Z0: No Zo application and Z1: application of K+ Zeolite at 4% weight) were considered with three replications. The results showed that the irrigation water type had a significant effect on the seed index, yield, cotton weight, number of leaves per plant and the lint percentage. The rate of Zeolite (Zo) did not show any significant effect on any traits, such as Kiel percentage, seed index, cotton weight, number of leaves per plant and cotton yield. The interaction between the irrigation water and the amount of Zo had a significant effect only on the number of leaves per plant. The results also showed that the highest lint percentage, cotton weight and number of leaves per plant in the irrigation by the effluent with No Zo application (I2Z0) treatment with the values of 64.3 and 11.23 gr and 36.3 numbers and the lowest values for the seed index, yield and number of leaves per plant in irrigation by normal water with No Zo application (I1Z0) were obtained with the values of 0.52 and 78 gr and 24.8.
O. Mohamadi, M. Heidarpour, S. Jamali,
Volume 23, Issue 3 (12-2019)
Abstract
Shortage of water resources and renewable per capita in last 30 years is put Iran on crisis threshold. Wastewater reuse is one of the battle solutions for water shortage and prevents wastewater depletion and environmental pollution. Thus, a pilot scale experiment was carried out to evaluate an integrated anaerobic/aerobic treatment for removal of BOD5 and COD, also to reduction of hydraulic retention time by considering optimum removal efficiency. The pilot was an anaerobic/aerobic bioreactor type under continuous-feeding regime based on a central composite design. The pilot was studied in different retention time and aeration was carried out between 5-15 hours. According to different retention times for COD removal efficiency, 24 hours was selected as optimum hydraulic retention time, that it is comparable to those obtained for 48 hours and over in plant roughly and could remove COD and BOD in acceptable ranges, results showed that average removal efficiency for BOD5 were 63.86 and 83.99 percent in aerobic and anaerobic phases, respectively. The average removal efficiency for COD was 76.5 and 74.35 percent for anaerobic and aerobic sections, respectively. The average removal efficiency for BOD5 and COD in this integrated aerobic-anaerobic pilot 95.24 and 94.8 percent, respectively.
M. Amerian, S. E. Hashemi Garmdareh, A. Karami,
Volume 24, Issue 3 (11-2020)
Abstract
Today, one of the biggest challenges facing the world is the lack of water, especially in the agricultural sector. In this research, we investigated the effects of irrigation method and deficit irrigation with the urban refined effluent on biomass, grain yield, yield components and water use efficiency in single grain crosses 704 maize. This research was carried out in a randomized complete block design with two irrigation systems (furrow irrigation (F) and drip irrigation (T)) and three levels of deficit irrigation treatments of 100 (D1), 75 (D2) and 55 (D3) percent of water requirements in three replications, in 2017, at the collage of Abourihan Research field, University of Tehran, in Pakdasht County. The results showed that the highest yield of biomass was 2.426 Kg m-2 for full drip irrigation treatments; also, there was no significant difference between D1 and D2 treatments. The highest grain yield was 1.240 kg m-2 for the complete drip irrigation treatment. The highest biomass water use efficiency was obtained for the treatment of 75% drip irrigation, which was equal to 5.3 kg per cubic meter of water. Therefore, a drip irrigation system with 75% water requirement is optimal and could be recommended.
M. Masoomi, M. Pourgholam-Amiji, M. Parsinejad,
Volume 26, Issue 1 (5-2022)
Abstract
In this study, the Drainmod-S model was used to vary soil salt concentration and the effect of underground drainage on the amount of leaching in a physical model (large lysimeter). A soil extractor was installed at depths of 40, 50, and 70 cm at a distance of 35 cm from the drainage to measure the salinity of the soil solution. In this study, three scenarios were applied including salinity profiles under conventional conditions (mid-season and end-season drainage), soil salinity profiles under different drainage conditions, and prior scenarios with saline irrigation. The second and third scenarios were applied in four drainage stages, respectively. These stages include transplanting and mid-season drainage (days 15 to 20), mid-season drainage (days 35 to 40), mid-season and end-season drainage (days 55 to 60), and end-season drainage (days 75 to 80). The results showed that after simulating the total solute concentration overtime at a depth of 40 cm and comparing it with the measured values, the coefficient of determination (R2) was 0.77 indicating an acceptable Drainmod-S model simulation. This parameter for simulating solute concentration at 50 and 70 cm depth was 0.76 and 0.75, respectively. The mean absolute error parameter (MAE) value was also negligible.
S. Koohi, B. Bahmanabadi, Z. Partovi, F. Safari, M. Khajevand Sas, H. Ramezani Etedali, B. Ghiasi,
Volume 27, Issue 4 (12-2023)
Abstract
Water supply remains a significant challenge in arid and semi-arid regions, and in addressing this concern, unconventional water sources have gained prominence. Notably, the extraction of water from air humidity, classified as an unconventional water source has seen increased adoption. Diverse techniques have been developed to achieve this goal, with the utilization of mesh networks being particularly prevalent. Consequently, this study assesses the evaluation of the performance of the ERA5 dataset in the simulation of atmospheric variables that influence the ability to assess water harvesting from air humidity (including temperature, wind speed, and water vapor pressure). Also, the possibility of water harvesting from air humidity was investigated in Qazvin Province. The outcomes demonstrated the benefit of incorporating adjustment coefficients in estimating temperature and wind speed using the ERA5 dataset. Based on these findings, the northwestern and southern regions of the province (Kuhin and Takestan) exhibit notable potential during spring and summer for water harvesting from the atmosphere. The peak water harvesting for these stations in the summer is estimated at 10.2 and 9.7 l/day.m2, respectively. Using the ERA5 reanalysis dataset, the annual average potential for water harvesting in the stations was evaluated at 7.9 and 4.6 l/day.m2, respectively. Notably, the minimum water harvesting capacity during the summer season recorded in Qazvin is equal to 3.39 l/day.m2, which can be planned for use in irrigation requirements of green spaces, fields, or gardens.