Search published articles


Showing 12 results for Velocity

M. Heidarpour, H. Afzalimehr, E. Khorami,
Volume 6, Issue 3 (10-2002)
Abstract

Of the many hydraulic structures developed by man, the weir is perhaps the oldest. Weirs are used for the measurement of discharge and regulation of water flow. The most common types of weirs are broad-crested, sharp-crested, circular-crested and cylindrical, and ogee crest weirs. Advantage of the circular-crested and cylindrical weir compared to the other weirs include simplicity of design, stable overflow pattern, larger coefficient of discharge and the associated lower costs. In the present study, potential flow around a circular cylinder are adapted to determine the velocity distribution at the crest section and to develop a model for coefficient of discharge (Cd) for circular-crested weirs. These results were evaluated using present test data for three types of weir models, namely, cylindrical, semicylindrical and semicylindrical with different heights and also Dressler theory. The results of the study showed that the experimental velocity profile agree very well with the theoretical profiles for the range of the study. Also, the prediction of the velocity distribution over the weir crest using Dressler theory is always less than the proposed model and measured data. The predicted values of coefficient of discharge (Cd) based on the proposed model agree well with Cd determined from direct discharge measurements. For the cylindrical model, the coefficient of discharge can be predicted from the proposed model within an error of –7% and for the semicylindrical and semicylindrical with different heights within ± 5%.
E Izadi, M Heidar Pour, A Kabiri Samani,
Volume 12, Issue 46 (1-2009)
Abstract

In this study, the flow characteristics have been investigated by measuring separation zone, surface and velocity profiles over the circular crested side weirs. An equation was proposed for the length of the separation zone using dimensional, statistical and regression analysis. The dimensional analysis showed that the length of separation zone depends on the upstream to the downstream water depth over the side weir, channel width to the downstream water depth and the Froude number. Comparison of the longitudinal and sectional surface profiles showed that the surface profiles at the vicinity of the side weir are non-uniform, due to separation zone close to the side weir. Therefore, the suitable place for measuring the characteristics of flow is along the centre line of the channel. It was observed that the maximum velocity occurred below the surface water which might be due to the secondary flow around the side weir. By increasing the distance far enough from the side weir, the effects of secondary flow were minimized and the velocity profiles tended to be uniform.
F. Kooti, S. M. Kashefipour, M. Ghomeshi,
Volume 16, Issue 59 (4-2012)
Abstract

In this paper, velocity profiles were analyzed under different conditions such as bed slope, discharge and concentration of density current, and water entrainment. Experiments were carried out in a tilting flume with the density currents being provided using salt and water solution. Results showed that the above mentioned factors have significant effects on the velocity profile characteristics. Dimensionless velocity profiles were also provided and compared for sub-critical, critical and supercritical flow conditions and the results showed that for supper critical conditions the velocity profiles are generally thicker due to the more ambient water entrainment. The coefficients of velocity profile equations were also derived for the jet and wall zones, which showed good agreements with the experimental measurements. Relative values of the velocity profile characteristics were also calculated in order to have a better understanding about the velocity profile structure.
M. Fathi, A. Honarbakhsh, , M. Rostami, A. Davoudian Dehkordi,
Volume 16, Issue 62 (3-2013)
Abstract

The present paper tries to describe the advantage and improvement of a numerical model when predicting government processes on Flow Rivers. With regard to the important effect of the flow velocity and shear stress forces on river bank erosion, we apply a Two-Dimensional numerical model, named CCHE2D, to simulate river flow pattern at a meandering river Khoshk-e-Rud River of Farsan, 30 Km west of Shahr-e- Kord. Various algorithms and parameters were implemented in a computational fluid dynamic model (CFD) for simulation of two-dimensional (2D) water flow to gain an insight into the capabilities of the numerical model. At this surveying, at first, we applied the topographic maps of the studied location and then, made the model geometry and calculation mesh with diverse dimensions. Finally, using the measured properties of the river flow and the Depth-Average, Two-Dimensional Hydrodynamic Model was run. Then, we obtained the results of model, such as depth and flow velocity at the river meander. Within the scope of the test cases, the model simulated water flow pattern processes at an intake, as well as a steady flow regime in a sine-shaped meandering channel by a 90_channel bend, which is the free-forming meander evolution of an initially straight channel. Because of high accuracy of this numerical model and multiple content of its internal parameters, the evaluation result of model, confirmed the measurement results. Therefore, the parameters gained from the model showed good conformity with measurement parameters at field cross-section. All results matched well with the measurements. The results also showed that using computational fluid dynamics for modeling water flow is one step closer to having a universal predictor for processes in Meandering Rivers
V. Rahmatabadi , M. Behzad, S. Borumandnasab , H. Sakhaei Rad,
Volume 19, Issue 73 (11-2015)
Abstract

In order to increase the distribution uniformity of sprinkler irrigation systems, some influential parameters such as wind speed, arrangement, space and type of sprinklers must be studied and controlled. In this study, a set of experiments were conducted based on ISO 7749/2(1990) standard to evaluate the ADF 250 and Nelson, F80APV sprinklers. To study the effects of wind velocity, operating pressure, various sprinkler layouts and spacing on water distribution uniformity, the experiments were conducted based on a single sprinkler method. Four operating pressures in the range of one recommended by the manufacturer for each sprinkler were applied and three sprinklers’ spaces on lateral pipelines (22, 26, and 30 m) were simulated for square and rectangular layouts to estimate the water distribution uniformity. Results showed that the distribution uniformity of Nelson sprinkler in existing wind velocities and operating pressures had smaller changes than ADF sprinkler. The 4.5 bar pressure for ADF sprinkler was better than other pressures, and operating pressures for Nelson sprinkler did not have any significant effect on distribution uniformity. With the decrease of sprinkler spacing to the wetting diameter in the simulated space, uniformity coefficient was increased. The recommended sprinkler spacing to the wetting diameter for these sprinklers ranged from 0.4 to 0.5 for square and rectangular layouts.


A. Motamedi, M. Galoie,
Volume 22, Issue 2 (9-2018)
Abstract

In order to investigate the flow formation on dunes, the experimental data from a flume 12 meters long, located in Hydraulic Lab at Technical University of Graz (Austria), were collected. In this study, dunes (particle sizes of 13 and 6 mm) in a 2-D plan were developed with the wavelength of 1 meter, the lee angle of 8 degree, and the crest heights of 4 and 6 cm; these were uniformly installed across the width of flume. The analysis of the experimental flow velocity profiles measured by ADV and PIV technology and the numerical profiles modeled by SSIMM showed that in the same hydraulic conditions, there was no significant relation between drag coefficients of particles on dunes and flow discharge variation, while the water depth reduction caused a sudden increase in the drag coefficient up to 66%. Also, reducing particle size of the dune increased the drag coefficient and there was a significant relation between particle size (diameter) and dune formation, so that in smooth crested conditions, as compared with the sharp crested dune, the drag coefficient was increased up to 32%.

Z. Talebi, H. Arvanaghi,
Volume 22, Issue 4 (3-2019)
Abstract

Flow pattern around the bridge piers includes water surface profile, velocity profile, shear velocity, shear stress distribution, etc. In this research, the effects of the base shape along with scale effects on the flow pattern around the rectangular bridge piers were numerically calculated through "Fluent Software", using Horizontal Velocity Distribution (Vx) and Vertical Velocity Distribution (Vy) criteria. The results showed that in studying the horizontal component of velocity (Vx) for the rectangular bridge piers, the vortices activity radius was 8 times of the length of the pier, and the minimum channel width for vortices activity was 16 times of the length of the Bridge pier; also, the minimum channel length in front of the pier was 4 times of the length of the pier and behind which, it was 25 times more than the bridge pier. Finally, the minimum channel length for the vortexes activity was calculated to be 29 times more than the bridge pier length. Furthermore, for the vertical component of velocity, the flow pattern around the base of the bridge cannot be an appropriate parameter for checking the effects of the length and width of the channel.

E. Yabbarepour, M. Shafai Bajestan, S. M. Kashefipour,
Volume 22, Issue 4 (3-2019)
Abstract

Channels and surface water are ways for the transfer of pollutants to the environment and human. When any pollutant is spilled into the channel, the pollutant concentrations are decreased after the travel. Reducing the distance is an engineering expedient. To reduce the distance, mixing in water should be increased. Thus, the main goal of the present study was to investigate the effect of the triangular vane on transverse mixing used for control bank erosion. Experiments were carried out in an 80cm width flume. The vane, which was triangular, was made of Plexi-glass with a 30% width of the flume length, 15cm height and 50cm far from the tracer injection. Salt solution was used as the soluble tracer. The experiment was carried out to investigate the effect of the triangular vane for two conditions: with and without vane. The transverse mixing (ez) and complete mixing length were estimated for the two conditions of with and without vane. The results showed with installing the triangular vane, the transverse mixing was increased up to 2.5 and the length of mixing was decreased by 60%, as compared with the tests of no vane.

N. Shahabinejad, M. Mahmoodabadi, A. Jalalian, E. Chavoshi,
Volume 24, Issue 3 (11-2020)
Abstract

Wind erosion is known as one of the most important land degradation aspects, particularly in arid and semi-arid regions. Soil properties, by affecting soil erodibility, can control the wind erosion rate. The aim of this study was to attribute the soil physical and chemical properties to the wind erosion rate for the purpose of determining the most important property. To this aim, wind erosion rates were measured in-situ at 60 points of Kerman province using a portable wind tunnel facility. The results indicated that wind erosion rates varied from 0.03 g m-2 min-1 to 3.41 g m-2 min-1. Threshold wind velocity decreased wind erosion rate following a power function (R2=0.81, P<0.001). Clay and silt particles, shear strength, mean weight diameter (MWD), surface gravel, dry stable aggregates (DSA<0.25mm), soil organic carbon (SOC), calcium carbonate equivalent (CCE) and the concentrations of the soluble Ca2+, K+ and Mg2+ were inversely proportional to the wind erosion rates following nonlinear functions. On the other hand, Wind erosion was significantly enhanced with increasing the sand fraction, soluble Na+, electrical conductivity (EC) and sodium adsorption ratio (SAR). According to the final results, among the studied soil properties, SAR and MWD were s the most effective properties controlling wind erosion in the soils of Kerman province. Therefore, it is recommended to consider suitable conservation practices in order to prevent the sodification and degradation of arid soils.

A. Kasra, A. Khosrojerdi, H. Babazadeh,
Volume 26, Issue 1 (5-2022)
Abstract

Abstract
The objective of the present research was to investigate the flow properties through the bottom outlet of the Nesa dam based on numerical and experimental studies. 22 piezometers were employed to measure the static pressure through the experimental model. The bottom outlet section was divided into three blocks to measure the endangered region. The graph of cavitation numbers was plotted for different flow discharge and cavitation damage levels to compare with a safe zone to find out the areas with a high risk of cavitation. The results illustrate that block No. 1 cavitation index is located at the “possible cavitation” damage. The studies showed that the cavitation index is the dependent parameter with the height of the water at the upstream reservoir. Furthermore, for block No. 2, the level of cavitation ranged from x/L = 0.44 to 0.90 and the cavitation level is related to the velocity, and by increasing the velocity to 16 m/s, the threat of the cavitation and its consequences is raised, dramatically. Regarding block No.2 and 3, the cavitation through this block depends on the negative pressure since the negative values of the cavitation index is related to the negative static pressure and it is assumed that the negative pressure can reach the threat of major damage. Also, a comparison between different numerical turbulence models illustrates that the k-ε RNG with fine mesh showed less error with experimental values which causing the numerical model with this condition to reach an appropriate agreement between numerical and experimental simulations.
N. Pourabdollah, M. Heidarpour, Jahangir Abedi-Koupai,
Volume 27, Issue 3 (12-2023)
Abstract

Hydraulic jump is used for dissipation of kinetic energy downstream of hydraulic structures such as spillways, chutes, and gates. In the present study, the experimental measurements and numerical simulation of the free hydraulic jump by applying Flow-3D software in six different conditions of adverse slope, roughness, and positive step were compared. It should be noted that two turbulence models including k-ε and RNG were used for numerical simulation. Based on the results, simulation accuracy using the RNG model was more than the k-ε model. The statistical indices of NRMSE, ME, NS, and R2 for comparing the water surface profile were obtained at 34.3, 0.0052, 0.995, and 983 for the application of the RNG model, respectively. Also, using the RNG model, the values of these indices for the velocity profile were obtained at 14.92, 0.127, 0.9982, and 962, respectively. In general, the error of the simulated water surface and velocity profile were obtained at 5.31 and 12.4 percent, respectively. Moreover, the maximum error of the numerical simulation results of D2/D1, Lj/D2, and Lr/D1 was ±12, ±12, and 16%, respectively. Therefore, the use of Flow-3D software with the application of the RNG turbulence model is recommended for numerical simulation of the hydraulic jump in different situations.

Sh. Kiyani, T. Rajaee, M. Karamdokht Behbahani,
Volume 28, Issue 3 (10-2024)
Abstract

In this research, the hydraulic parameters of flow have been investigated on SMBF flumes in two simple and multiple modes. In this research, Flow3D software was used for the numerical simulation of SMBF flow. The simulations have been performed in three flow rates (5, 15, and 30 liters per second) and three opening rates (0.075, 0.1, and 0.15 meters). The results showed that when multiple SMBF flumes are used instead of simple SMBF flumes, the maximum velocity increased by 12% on average at a flow rate of 5 L/s, 19% at a flow rate of 15 L/s, and 10% at a flow rate of 30 L/s. The energy consumption of multiple SMBF flumes has been reduced on average by 21% at a flow rate of 5 L/s, by 66% at a flow rate of 15 L/s, and by 122% at a flow rate of 30 L/s compared to simple SMBF flumes. Finally, the observations showed that during the productivity of multiple SMBF flumes compared to simple SMBF flumes, the size of eddies has decreased and the number of eddies and the area of flow turbulence have increased.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb