Search published articles


Showing 5 results for Weap

A. Azough, S. K. Marashi, T. Babaeinejad,
Volume 22, Issue 3 (11-2018)
Abstract

The concern about the war and the threat of terrorism and weapons application and prohibited weapons is growing; on the other hand, the contamination of soil, plant and disease outbreaks in the community is increasing. The main problem with crops, especially wheat in the contaminated soils of war zones, are associated with the high concentrations of heavy metals and toxic things, especially arsenic. Zeolite is one of the solutions to the problem of contaminated soils in war affected areas. The aim of this study was to determine the effect of the ionic strength of zeolite on the adsorption of arsenic and nutritional properties of wheat in contaminated soils including weapons. The experiment was carried out in a  factorial arrangement involving  a randomized complete design with three replications. Treatments included four levels of zeolite 2.5 (a4), 1.5 (a3), 0.5 (a2), 0 (a1) percent of the weight of the soil and two soil recourses, one obtained from out of the war zone (without contamination) (b1) and other one was from the contaminated soil to weapons (b2). The results showed that soils contaminated by weapons increased the concentrations of arsenic in wheat. Also, with the application of Zeolite in the contaminated soil treatments, there was a significant reduction at 1% level and a remarkable increase in nitrogen, phosphorus, potassium and calcium in the wheat grain in both soils.

B. Navidi Nassaj, N. Zohrabi, A. Shahbazi,
Volume 23, Issue 2 (9-2019)
Abstract

Integrated simulation of water resources systems is an efficient tool to evaluate and adopt various options in macro-policies and decision-making procedures that are in line with the sustainable development of drainage basins. One of the drainage basin management policies is to enhance the efficiency of agricultural land use. Considering the complicated function of the drainage basin elements and their interaction with each other due to water discharge fluctuations caused by various factors such as climate change, the evaluation of these policies is of great importance. Given the low irrigation efficiency in Iran, the present study was aimed to evaluate the effects of management scenarios (including long-term irrigation efficiency increased up to 20% with 5% intervals) and discharge fluctuation scenarios (including 5% and 10% decrease in the average basin inflows) on the reliability and vulnerability of water resources system in Dez Basin. The integrated scenarios were simulated in the WEAP model. The scenarios were separately simulated for the Dez irrigation network and all farmlands across Dez Basin. According to the results, reliability was decreased by 5.69 and 18.89% in the scenarios with 5% and 10% decrease in the average basin inflows, respectively. Furthermore, the irrigation efficiency of 20% in the scenario considering the current inflows ended up with the reliability of 73.58%. Moreover, in the scenario involving 5% decrease in the average basin inflows, the reliability was increased by 3.8% with an increasing efficiency of 20%; with 3.8% and 5.7%, there was an increasing efficiency of 15% and 20% in all farmlands, respectively. In the scenario consisting of 10% decrease in average basin inflows, the reliability was increased by 1.91%, 3.8%, and 5.7% with the increasing efficiency of 10%, 15%, and 20%; on the other hand, with, these were 3.8% 9.46%, and 13.2% with increasing efficiency in all farmlands, respectively. In all scenarios, the vulnerability was found to fluctuate between 25% and 31%, which was systematically analyzed.

A. Kheyrandish, S. F. Mousavi, H. R. Ghafouri, S. Farzin,
Volume 23, Issue 4 (12-2019)
Abstract

In this research, conjunctive and integrated operation of surface and ground water resources of Behbahan plain (Maroon dam's reservoir and existing wells, respectively) was investigated. Simulation of allocation of water demands in this basin was performed by four scenarios, using WEAP software: 1) current conditions (M1), 2) reference scenario for the next 16 years (M2), 3) land development scenario (M3), and 4) optimal scenario (M4). The optimal scenario was performed with multi-purpose linear programming. Based on the results, drinking water demands was satisfied completely in all scenarios. Under the scenario of current conditions, all agricultural demands, except the traditional rights, supplied more than 50% in the low-flow months. In the reference scenario, water supply for agricultural demands in some months was less than 100% and even in June and July, the water supply for North and South Irrigation networks of Behbehan plain was less than 10%. In the land development scenario, agricultural demands of all irrigation networks, except Ramhormoz network, satisfied more than 90% in all months. The optimal scenario performed better than other scenarios for minimum Maroon River flow and volume of storage in the reservoir. Comparison of the four scenarios in satisfying the environmental needs also revealed that the optimal scenario performed better than the other three scenarios in the spring months. However, it provided less than 100% of water needs in the whole year. Comparison of the four scenarios also showed that the first two scenarios had the highest reliability percent in the Jayzan-Fajr, South Behbahan and North Behbahan Irrigation Networks and traditional water rights. Frequency of storage-time-probability from the storage volume in the optimal scenario also showed that maximum storage lifetime of the lasting storage volume was 558 million m3 (which was equal to half of the volume of Maroon dam’s reservoir) with the highest probability (60%).

D. Salehi, M. Goodarzi, H. Montaseri,
Volume 23, Issue 4 (12-2019)
Abstract

This research tried to provide a sustainable solution for the allocation of water resources of Zayandehrood basin in a way ensuring minimal conflicts and tension between the stakeholders in use of the water resources, four main decision makers of the basis, comprising Regional Water Company, conflicts among Agricultural Jahad Organization, and Department of Environment of Isfahan Province and Chaharmahal and Bakhtiari Province, were reviewed and 128 possible cased  according to 7 scenarios were constructed and applied in the  GMCR model. According to the GMCR approach, 6 balanced sustainable scenarios in different climatic periods of the basin were presented. Finally, the results were generalized for choosing the best mode in the form of a scenario within the WEAP model; also, the results obtained from these scenarios were presented using the criteria of system performance assessment. On the basis of the findings, Scenario II was developed, comprising the application of new simultaneous management of demand and supply, restrictions in drawing water from water tables, new prioritization in stakeholder allocation and new water portion plans in the basin as the best scenario with 81.4% sustainability index.

F. Mohammadmirzaei, M. Zakerinia, A. Hezarjaribi,
Volume 24, Issue 2 (7-2020)
Abstract

Increase in population, agricultural development, and the reduction of surface water resources have resulted in an untapped harvest of ground water. On the other hand, the lack of attention to the balance between the exploitation and recharge of aquifers has led to a drop in water level in the aquifer. To understand the behavior of the ground water system and the status of resources and uses in the basin, as well as the situation of water exchange in these two parts, it is possible to connect reliable groundwater and surface water models The purpose of this study was to simulate Gorganroud aquifer flow by using using the groundwater model to understand the behavior of the aquifer system in different hydrological conditions and to provide a management solution to improve the  supply and demand conditions. First, the status of the aquifer under study was simulated by using the information available in the area by Modflow; then the groundwater model results were transferred to the Water Evaluation and Planning model (WEAP) by the LINK KITCHEN Software. Then different management scenarios including increased irrigation efficiency in agriculture,  the use of refinery effluents and  the reduction of river flow due to climate changes were considered as two combinations of the above scenarios to alleviate water demand under this scenario; so, projections for a period of 20 years water resources of the basin were studied. The results of modflow calibration showed that there was a good agreement between observation and simulated water table, such that the RMSE for Steady and Transient condition was 0/972 and 0/97, respectively. The results also showed that simultaneously applying multiple water management strategies seems to be better than any of its individual states, thereby reducing water withdrawal on various resources.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb