Search published articles


Showing 4 results for Wastewater.

A. Ghanbari, J. Abedi Koupai, J. Taie Semiromi,
Volume 10, Issue 4 (1-2007)
Abstract

A field study was conducted at the Zabol Agricultural Research Center during the years (2003-2004) to investigate the effect of irrigation with treated municipal wastewater on the yield and quality of wheat and some soil properties. Irrigation treatments were: T1: Irrigation of wheat with well water during entire period of growing season T2: Irrigation of wheat with well water until the begging of flowering stage, and irrigation with wastewater in every other turns of irrigation T3: Irrigation of wheat with well water until the beginning of booting stage, and irrigation with wastewater in every other turns of irrigation T4: Irrigation of wheat with well water until the begging of tilling stage, and irrigation with wastewater in every other turns of irrigation and T5: Irrigation of wheat with wastewater during entire period of growing season. A complete randomized block design with four replications was adopted for this experiment. The soil was sandy loam with no limitation for internal drainage. Chemical and physical aspects of soil were measured during the experiment. Grain yield, yield components and chemical composition of wheat grain were also measured. The results showed that yield of wheat and total biomass production were statistically significant in T3, T4 and T5 compared with the control treatment. Plant height, width and length of flag leaf, numbers of fertile tillers, length of panicle, numbers of grains per panicle and weight of 1000 grains were also statistically significant with the control treatment. Percentages of protein were statistically different among various irrigation treatments. No significant changes in accumulation of heavy metals in soil and plant grains were observed. The increase of SAR, ECe, O.C% and total nitrogen in the T4 and T5 were statistical significant compared with the control treatment. In summary, for sustainable use of Zabol municipal wastewater, the growth stages of wheat should be irrigated with municipal wastewater and other growth stages should be irrigated with nonsalinty water, so that the maximum yield is obtained and soil salinitisation and sodication is prevented.
N. Parsafar, S. Marofi ,
Volume 17, Issue 66 (2-2014)
Abstract

In this study, a completely randomized experiment was designed with five irrigation treatments and three replicates. The irrigation programs were raw wastewater (T1), treated wastewater (T2), a combination of 50% raw wastewater and 50% fresh water (T3), a combination of 50% treated wastewater and 50% fresh water (T4), and fresh water (T5). The experiments were run within a greenhouse. The lysimeters were built up in September 2009 and they were filled with a two layer soil. The upper (30 cm) and lower (40 cm) layers were sandy loam and sandy clay loam, respectively. The results showed that the effects of watering treatments on transfer coefficients of heavy metals from soil to shoots (except Cd) and tubers of potato (except Zn and Cu) were significant (p <0.01). Maximum and minimum transfer coefficients of heavy metals were observed in the (T1) and (T5) treatments, respectively. Also, the transfer coefficients of Cd from soil to shoots were lower than tubers. In the case of Zn, Cu and Pb, transfer coefficients from soil to tubers were lower than shoots. In this study, the maximum transfer coefficients to shoots were Cd (0.331-0.463), Zn (0.383-0.230), Cu (0.173-0.386) and Pb (0.003-0.057), respectively. Maximum transfer coefficients toward tubers (except T5) were Cd (0.439-0.572), Cu (0.081-0.138), Zn (0.170-0.217) and Pb (0-0.017), respectively. The combination of wastewater and fresh water use in short-term irrigation might be feasible, but a heavy metal monitoring program is necessary.
Y. Choopan, A. Khashei Siuki, A. Shahidi,
Volume 21, Issue 4 (2-2018)
Abstract

Limited water resource in arid and semi-arid areas is one of the most important problems in the agricultural sector. Therefore, the use of non-conventional water resources becomes more important. For this reason, a study was conducted on barley to evaluate the effect of irrigation with sugar plant wastewater as a factorial randomized complete block design field experiment. Treatments include water well I1, wastewater I2, combined water and wastewater I3 (the ratio of seven to one, according to local practice) in two levels of without water stress S1 and  %75 water stress S2 and treatment I1S1 was considered as control. The results showed changes in surface tension of %1 had a statistically significant effect on plant height, grain yield and root length. As well changes of irrigation water in the level of %1 had a statistically significant effect on plant height, grain protein yield and root length. Maximum grain yield was obtained in treatment I1S1 with the weight of 4034 kg per hectare and lowest grain yield was obtained in treatment I2S2 with the weight of 1564 kg per hectare. The lowest and highest percentages of protein content were observed in treatment I1S1 for 12.37% and treatment I2S2 for 13.47%, respectively. The plant height showed the highest amount in control treatment, i.e. 82.87 Cm.

S. Jamali, H. Ansari, M. Zeynodin,
Volume 25, Issue 1 (5-2021)
Abstract

The goal of this study was to investigate the effects of treated urban wastewater and different harvesting times on the yield and yield components of Sorghum (cv. Speed feed) in the greenhouse condition. The research was done based on a completely randomized design including 3 replications as pot planting in Ferdowsi university of Mashhad in 2016. In this study, the effects of four mixtures consisting of the moderations use of the treated urban wastewater and freshwater (0, 25, 75 and 100 percent mixture of treated urban wastewater and freshwater) and three harvesting times level (pre-flowering, after 50 percent of the plant to flowering, and grain filling stage) on the yield and yield components of Sorghum were evaluated. The results inducted that the effect of different moderations of irrigation regimes on all of them parameter was highly significant (P<0.01), but plant height was non-significant; it was also revealed that the effect of harvesting times on all of the parameters was highly significant (P<0.01), but leaf width was non-significant. The results also exhibited that the interaction effects of irrigated regimes and harvesting times on the leaf number, panicle length and width, leaf, panicle, and stem was highly significant (P<0.01), but plant height, stem diameter, branches number, and leaf length and width were significant at the  5 percent level (P<0.05). Also, the use of 25, 75, and 100 percent mixture of wastewater resulted in the  forage yield of  37.5, -29.3, and 12.9 percent (pre-flowering); -31, -15.3, and -47.4 percent (after 50 percent of the plant to flowering),  and -11.8, -35.7 and -28.4 percent (grain filling stage), respectively. The highest forage weights (46.2 g per plant) showed, in the study, irrigated by a mixture of 75 treated wastewater and 25 freshwater, and harvesting the plant after 50 percent in flowering stage; on the other hand, the best treatment in this study irrigation by the mixture of 75 treated wastewater and 25 freshwater and harvesting the plant after 50 percent in the flowering stage, Thus, using the treatment in farm experiment required the field research.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb