Search published articles


Showing 388 results for Water

Sayed Farhad Mousavi, Mohammad Nekoei-Meher, Mohammad Mahdavi,
Volume 2, Issue 2 (7-1998)
Abstract

As unit hydrograph is an important item in flood estimation of the rivers and since flood hydrograph and simultaneous rainfall hyetograph is needed to derive a unit hydrograph, hydrologists recommend synthetic unit hydrographs for areas lacking these hydrometeorological data. A research was conducted in the Zayandehrud-dam watershed (Pelasjan sub-basin) to test the efficiency of synthetic unit hydrographs (Snyder, SCS, and Triangular methods) in hydrological evaluations. For the purposes of this study, natural and synthetic unit hydrographs were determined and compared, using all morphologic, hydrometric and rainfall data. The results showed that Triangular and SCS methods fit natural unit hydrographs better than Snyder method does, but peak instantaneous flow is estimated to be higher than the observed flow. So, the constant 2.083 in peak flow equation is recommended to be changed to 1.74 in this watershed. The Snyder method predicts good peak flows, compared with the other two methods. Generally, it is concluded that Triangular, SCS, and Snyder methods are ranked 1 to 3 for determination of synthetic unit hydrographs in this watershed.
Davar Khalili, Abolghassem Yousefi,
Volume 2, Issue 3 (10-1998)
Abstract

Physiographic characteristics of Atrak Watershed described by a number of parameters were used in regression models to estimate maximum daily discharges. These parameters were sub-watershed area, main waterway length, mean waterway slope, mean watershed elevation and mean watershed slope. Based on the results of correlation between the above parameters and their suitability for discharge estimation, three regression models were developed for further analysis. Model 1 applied area as the independent variable to estimate maximum daily discharge. In model 2 area and mean watershed elevation were the independent variables. Model 3 used area and mean waterway slope as the independent variables. Even though the results of testing did identified all three models as appropriate for application, further testing selected model 1 as the most appropriate. Recommendations were made for model application to similar watersheds lacking the necessary data.
Sayed Farhad Mousavi, Behrouz Mostafazadeh, Shokrollah Absalan,
Volume 2, Issue 4 (1-1999)
Abstract

This study aims to evaluate the present management of border irrigation systems applied to wheat, alfalfa and sugar-beet farms in Boyer-Ahmad and Gachsaran cities in Kohgiloyeh and Boyer-Ahmad Province. Experimental farms included 8 alfalfa farms, 5 wheat farms and 5 sugar-beet farms. The experiments were conducted at different growth stages of plants and customary borders with prevalent dimensions, slopes, and management practices. The relationship between management allowable deficit, moisture deficit before irrigation, and infiltrated depth indicated that in most cases either “deficit irrigation” or “stress irrigation” had been applied. This type of irrigation has positive effects on water use but negative effects on supply of required soil moisture for plants. In the first to third irrigations, measured application efficiencies ranged from 40.8% to 100%, 52.2% to 100%, and 61.1% to 100%, respectively. Graphs of advance, recession, and ideal recession showed the effects of border slope and length on inflow cut time and uniformity of water distribution. Water infiltration curves showed the amount of deficit irrigation. The results showed that weak irrigation management is the result of three parameters: lack of knowledge on the part of farmers about soil moisture conditions and correct time for irrigation, weak irrigation scheduling, as well as an imbalance between available water supply and irrigation requirements which leads to wasting water and reduced irrigation efficiency.
T. Sohrabi, U.a. Khoshkhahesh,
Volume 3, Issue 4 (1-2000)
Abstract

The purpose of this research is to determine the application efficiency of rice irrigation plots and to analyze the reasons for low efficiency. The study will also try to determine the effective factors which could increase the application efficiency of rice fields. The selection of rice fields was based on climate, soil characteristics, and farmer management. Water application efficiency was determined by field measurements in three modern irrigation networks named Fouman (F), Rasht (G) and Lahidjan (D). In the meantime, a traditional network was included for comparison. In the study areas, the soil texture was heavy with an infiltration rate of less than 3 mm/day. The study was carried out under two different conditions: (1) without return flow and (2) with return flow. In the first case, the average application efficiencies in Fouman (F), Rasht (G) and Lahidjan (D) were about 51.2, 49.0 and 49.4 percent, respectively and the maximum and minimum values were about ((52.6, 49.7)), ((50.7 , 47.3)), and ((50.7 , 48.0)) percent, respectively. In the second case, the average application efficiencies for the above-mentioned regions increased to 73.4, 73.3 and 72.4 percent, respectively and the maximum and minimum values were about ((74.3, 72.4)), ((74.3, 72.1)), and ((73.0, 71.5)) percent, respectively. Runoff ratios in the above-mentioned regions were 30, 33 and 31 percent, respectively. During growing period (from transplanting to harvesting), the average applied irrigation water was about 1130 mm (11300 m3/ha) and the average evapotranspiration was determined to he about 561mm.
J. Pourreza, H. Nasrollahi, A.h. Samie, M. Mohammadalipour, A. Assadian,
Volume 3, Issue 4 (1-2000)
Abstract

In order to study the effects of Total Dissolved Solids (TDS) in water on the performance of broiler chickens, preliminary data were obtained on water resources of Isfahan Province. Complementary tests and analyses were also performed including physical, chemical and microbial ones. Six different water qualities based on TDS contents of less than 1000, 1000-2000, 2000-3000, 3000-4000, 4000-5000 and more than 5000 ppm were selected. The main experiment lasted for 7 weeks (7-56 days), using 288 chickens in a completely randomized design, with 3 replications, while, the environmental and genetic factors were controlled in an identical broiler housing.

The results showed that using water with different TDS contents had the most negative effects on mortality rate (%) in the rearing period and up to 56.2% mortality was recorded at the highest TDS content. Water consumption showed high and positive correlation (P < 0.05) with TDS (r = +0.74). Correlation between TDS and bedding moisture was also high (r = +0.65) and significant (P < 0.05). The differences between final body weight of control chickens and highest level of TDS were significant (P < 0.05). Feed intake also was affected by different TDS contents and showed similar results as with body weight. Increasing the TDS level decreased the abdominal fat in the female chickens and ash content of tibia in the male chickens. It is concluded that water TDS should be considered for the development of broiler chicken farms. Therefore, it is recommended that higher quality waters (with a TDS content of 3000 ppm) must be used for this purpose. Otherwise, appropriate systems should be used to improve physical and chemical composition of the water.


F. Noorbakhsh, M. Afyuni,
Volume 4, Issue 1 (4-2000)
Abstract

Field capacity (FC) and permanent wilting point (PWP) are important factors affecting irrigation scheduling and field management. FC and PWP can be estimated from some of the soil physical and chemical properties. Pressure Plate apparatus is usually used for determination of FC and PWP, but this is a time-consuming and laborious procedure besides, the apparatus may not be available in many laboratories. Samples were taken from 23 locations in Isfahan and Chaharmahal Va Bakhtiary provinces in central Iran. Soil texture, organic matter and cation exchange capacity were determined. Soil moisture at FC and PWP of the soils were measured with a pressure plate. Simple and multiple regression analyses were used to study the relationships between FC and PWP with sand, silt, clay, soil organic matter and cation exchange capacity.

 Results indicated that FC significantly correlated with sand, organic matter and cation exchange capacity in a stepwise model (r=0.97**). The PWP of soil also correlated significantly with silt, organic matter, and cation exchange capacity in a stepwise model (r=0.95**). Available water capacity (FC-PWP) correlated with sand in a stepwise model (r=0.82**). On the whole, results showed that FC and PWP can be estimated from some soil physical and chemical properties.


Y. Ebrahim Nejad, J. Pourreza,
Volume 4, Issue 1 (4-2000)
Abstract

This experiment was carried out to study the effect of ionophore drugs (Salinomycin, Lasalocid and their combination) on the performance of broiler chicks. Also their relationship with methionine (three levels) was evaluated. 1215 one-day-old commercial broiler chicks (Arian) were divided into 81 groups, 15 chicks per group, and tested in a completely randomized design with a 3×3×3 factorial experiment and three levels (0/0, recommended and 1.5 times recommended) of drugs and three levels (0.0, 1% and 0.2%) of supplemental methionine.

The results indicated that these drugs reduced body weight gain significantly (p<0.05) at 21 and 56 days of the experiment. Decreasing feed consumption and increasing feed conversion was significant (p<0.05) due to Lasalocid supplementation. Increasing drug level significantly (p<0.05) reduced body weight gain and feed intake and feed conversion was increased at 21 to 42 and 0 to 56 days of the experiment. The effect of supplemental methionine on body weight of 42 days (P<0.05) and feed conversion at 21 to 42 and 0 to 56 days (p<0.01) were significant. The interactions between drug type and drug level on body weight gain, feed consumption and feed conversion were significant (p<0.05). Lasalocid significantly (p<0.05) increased water intake. Drugs did not affect litter moisture and mortality. The results showed that Salinomycin was better than Lasalocid. Also supplemental methionine was not effective in compensating for the growth depression caused by ionophore drugs.


A. Hassanli, A. Sepaskhah,
Volume 4, Issue 2 (7-2000)
Abstract

In this study, seven citrus gardens in different parts of Darab were chosen to evaluate the drip irrigation systems. The evaluation process was based on the Merriam and Keller’s model (1978). Besides the evaluation of drip irrigation systems, the water requirement of citrus was estimated using four models including Blany-Criddle modified by FAO, Hargrive-Samani, Pan Evaporation and Solomon-Kodama model. On the basis of the results obtained by Hargrive-Samani with 1296 mm annual water requirements, a comparison was made between irrigation with existing systems and irrigation under favorable and desired conditions.

The results from field measurements indicate a considerable reduction in the emitter discharges. The low pressure and emitter clogging could be two major reasons for the problem. Low pressure at head control, topography, head losses and also using no filter(s) or unefficient filters are the main reasons for the reduction. In some gardens, overirrigation even up to 2.5 times of water requirement was practiced by using extra emitters and increased irrigation times. Overirrigation causes considerable water losses through deep percolation and in reased overwetting area.

Field measurements indicated a good emission uniformity (EU) for the fields with overirrigation. EU in chosen fields varied from 40 to 91%, AELQ varied from 31 to 82% (poor to good) and PELQ varied from 36 to 82%. This study showed that most farmers are not familiar with plant water requirements. The fields with efficient filtration due to using extra emitters per plant are mainly overirrigated. But fields without any filter of unefficient filters are not irrigated sufficiently. The very high manufacturing variation coefficient of IEM emitters (Cv=0.22), which are widely used in Darab, causes a design emission uniformity of 55%.


A. Alizadeh, A.g. Ghorbani, G.h. Haghnia,
Volume 4, Issue 4 (1-2001)
Abstract

In order to compare the effect of drip and furrow irrigation methods with different quantities of water (50%, 75%, and 100% of the amount of water evaporated from class A pan evaporation during irrigation intervals) on yield and quality of tomato, an experiment was conducted on a silty loam soil in Mashhad Agricultural Research Station. The experimental design was a factorial trial with completely randomized blocks and. four replications.

The results showed that the highest yield (51 t/ha) was obtained from the treatment of drip irrigation with 100% water application. This amount was 4.5 tons higher than the yield from furrow irrigation treatment. Deficit irrigation by 25 and 50 percent decreased total yield by 34.7% and 67.95% in the drip irrigation method and by 27.57% and 64.29% in the furrow irrigation, respectively. Water use efficiency in drip irrigation was two times higher than that in the furrow treatment. Quality and chemical composition of the fruits were not significantly different in the two irrigation methods. Increasing the water deficit, however, increased the amount of soluble solids of the fruits.


E. Rowghani Haghighi Fard,
Volume 4, Issue 4 (1-2001)
Abstract

Whole corn plant was ensiled in 70 gr minisilos for 60 days to evaluate the effects of addition of two levels of Cellulomonas uda bacteria (0, 1.2×105 and 2.4×105 cfu per gr of fresh forage) on fermentation and chemical composition of silage. The experiment was arranged as a completely randomized design. The silos were opened after 3 and 6 days of fermentation. The criteria measured included dry matter (DM), pH, organic matter, water soluble carbohydrates, crude protein, cell wall (NDF), acid detergent fiber (ADF), hemicellulose, cellulose, and ammonia-N contents.

Both levels of bacteria significantly decreased the pH of silages after 3 days (P<0.05). The final pH of silage with the higher level of bacteria was significantly lower, indicative of a greater fermentation of cellulose in this silage. Addition of bacteria resulted in a non-significant increase in the level of final residual water soluble carbohydrates. Final silage ammonia-N concentration was less than 0.8% of dry matter in all silages and was not affected by bacterial treatment. The ADF content was decreased by 11.9% in the silage containing the lower level of bacteria and by 1.8% in the silage which contained the higher level of bacteria. The NDF content increased in the control silage and that with the lower level of bacteria but decreased by 3.6 gr Kg DM-1 in the silage with the higher bacterial level. Hemicellulose contents increased in all silages but cellulose contents decreased by 9.38% (control), 17.37% (low bacteria) and 12.49% (high bacteria) in the control and bacteria-treated silages, respectively. The results indicated that the addition of 12×105 cfu Cellulomonas uda per gr of whole fresh corn plant was effective in increasing residual water soluble carbohydrates, reducing NDF and hydrolyzing cellulose of whole corn plant.


T. Sohrabi, A. Hosseini, K.h. Talebi,
Volume 5, Issue 1 (4-2001)
Abstract

During recent years, worldwide concern has been focused on the potential for contamination of surface waters and ground waters by agrochemicals in runoff and soil water from irrigated fields. Given this perspective, it is very important to correctly evaluate the levels of different agrochemicals in water, both from human toxicological and environmental viewpoints and to develop management strategies for reducing agrochemical loads to acceptable levels in the environment. The main objective of this study was to assess the qualitative changes of tailwater due to the use of agrochemicals and thereby to determine contamination loads. Four farms (A, B, C and D) were chosen in the Foumanat region in the F2 unit in 1996. The areas of these fields ranged from 0.22 to 0.6 ha having a number of unequal successive basins with variable inflow and outflow rates.

 A quantitative analysis showed that the tailwater ratio in farms A, B, C and D ranged from 2 to 64% during the irrigation season. The outflow water was classified as C3S1. The changes in qualitative factors were not significant and did not follow any certain pattern during the irrigation season. The changes in SAR, EC, Cu, Zn, B, P, K and DO in the inflow and outflow waters were also insignificant. After fertilizer application, the increase in nitrogen concentration in the outflow was significant. The average pollution loads in the inflow and outflow were about 1618 and 1476 kg/day/ha, respectively. The remaining load in the rice fields was about 142 kg/day/ha, which was meaningful at 1% level. The fifth farm (E) located in Lahidjan was sprayed with diazinon. Water samples were analyzed each day for diazinon residues for 10 days after application. Sample analysis showed that the concentration of the insecticide was 93.08 mg/l immediately after application and gradually reduced to 0.98 mg/l ten days after spraying.


K. Mohammadi,
Volume 5, Issue 1 (4-2001)
Abstract

In this paper, a numerical solution is presented for one-dimensional unsaturated flows in the subsurface. Water flow in the subsurface, however, is highly nonlinear and in most cases, exact analytical solutions are impossible. The method of reference-operators has been used to formulate a discrete model of the continuum physical system. Many of the standard finite difference methods and also the finite volume method are special cases of the method of reference-operators. Unlike elementary finite difference methods, the method of reference-operators may by used to construct finite difference schemes on grids of arbitrary structure. A one-dimensional model was developed to predict the soil-water suction (negative pressure head) and water content in a vertical column of a layered soil. The model was verified against some available analytical solutions and experimental results and, in all cases, it showed good agreement.
M.a. Izadbakhsh, S.s. Eslamian, S.f. Mosavi,
Volume 5, Issue 2 (7-2001)
Abstract

Flood is one of the catastrophic events that has attracted the hydrologists’ attention. In this research one of the important flood indices, i.e. maximum-daily mean-discharge, was determined for several western Iran watersheds, namely, in the catchments of Gamasiab, Qarasou, Saimare, Kashkan, Sezar and Abshineh. Daily data were prepared from stream-gauging stations and a 30-year concurrent period was selected.

 Flood frequency analysis was performed using HYFA and TR computer programs and optimum distributions were chosen by goodness of fit tests. Extreme flow values having different return periods of 2, 5, 10, 25, 50, 100, 500 and 1000 years were calculated. Modeling was done with regional analysis using multiple regression technique between maximum-daily mean-discharge and physiographic characteristics of the basins. The most important parameter for the selection of the model was the adjusted coefficient of determination while significant level, standard error and observed discharger vs. computed discharge plot acted as controlling parameters. Finally, different models with different parameters were selected from power, exponential, linear and logarithmic forms. The results showed the power model to be the best among the four types. The main channel length, drainage density and time of concentration were the most effective parameters on flow. After analyzing the errors, it appeared that increasing the return period would cause an increase in the model error. At 1000-year return period, the error reached 32.2%.


N. Sakenian Dehkordi, B. Ghobadian, S. Minaei,
Volume 5, Issue 2 (7-2001)
Abstract

A suitable instrument capable of inserting mulch into soil is needed to improve soil water holding capacity. The goal of this research is to design and manufacture an instrument with a blade and mechanism that can insert rice mulch into the soil. All the parameters in sub-soiling operation were taken into account, and the technique presented can be recommended as a special method of injecting rice husk. The instrument designed was easy to use on a tractor. Sub-soiling operation and husk injection were carried out satisfactorily using various amounts of husk and at different soil depths. This method was added to the conservation chart presented by Morgan as an integrated technique.
A. Erfani, G.h. Haghnia, A. Alizadeh,
Volume 6, Issue 1 (4-2002)
Abstract

A field study was conducted at the College of Agriculture, Ferdowsi University of Mashhad, to investigate the effect of irrigation with treated municipal wastewater on the yield and quality of lettuce and some soil characteristics. Five irrigation treatments were applied to a clay loam soil, classified as fine loamy mixed mesic Calcixerollic Xerochrepts, in a randomized block design with 5 replications. The treatments consisted of T1 (Irrigation with treated wastewater over all growing season), T2 (Alternate irrigation with treated wastewater and well water), T3 (Irrigation with well water and application of cattle manure), T4 (Irrigation with well water plus fertilizer N and P), and T5 (Irrigation with well water only as control). Chemical analysis of well water proved to be a suitable source for agriculture.

The results showed that the yield was higher in T1, T2, T3 and T4 as compared to the control treatment. Maximum fresh and dry yields were obtained from T3 & T1 and T1 & T3, respectively. Plant tissue analysis showed an increase in macronutrients (N, P, K) and heavy metal concentrations in shoots and roots of lettuce in the first four treatments as compared to the control. In T1, iron concentration was maximum while that of cadmium was minimum. Furthermore, microbial contamination was considerably higher in T1 and T2. Soil analysis indicated that in plots treated with wastewater, electrical conductivity, total nitrogen, available phosphorus, soluble boron and heavy metal concentration increased. However, their values were all below international standards. More experiments seem to be necessary in this regard.


B. Mostafazadeh, M. Kahnouji,
Volume 6, Issue 1 (4-2002)
Abstract

The emitter discharge is affected by parameters such as pressure, irrigation water temperature, manufacturer’s coefficient of variation, and emitter clogging. In order to study the effects of irrigation water temperature on emitter discharge and to determine the discharge-pressure variations and manufacturer’s coefficient of variations, an experimental trickle irrigation system was designed and studied in the greenhouse, College of Agriculture, Isfahan University of Technology. Since the sensitivity of different emitters to water temperature variations is variable, four different, widely used, types of Iranian emitters including in-line long-path emitter, gun emitter, pressure compensating emitter, and double-chamber tube were used. Each emitter was evaluated under 14 different irrigation water temperature treatments ranging from 11 to 43.5°C.

 The results showed that in general as water temperature increases, the emitter discharge increases linearly in all types, except for the pressure compensating emitter in which the discharge decreases linearly. The emitter uniformity, absolute emission uniformity and Christiansen uniformity coefficient parameters were affected by emitter discharge variations. For each type of emitter under study, the changes in manufacturer’s coefficient of variations due to irrigation water temperature were different. The manufacturer’s coefficients of variations at a water temperature of about 20°C for double-chamber tube, in-line long-path emitter, gun emitter and pressure compensating emitter were equal to 5, 7, 13 and 22 percent, respectively. Moving from gun emitter to the double-chamber tube and finally to the in-line long-path emitter, the sensitivity to irrigation water temperature decreased. Sensitivity to pressure variations decreased in the order of gun emitter, double-chamber tube, in-line long-path emitter, and finally pressure compensating emitter.


S. Amin, A. M. Ghafuri Roozbahani,
Volume 6, Issue 3 (10-2002)
Abstract

Prediction of watershed responses and simulation of runoff rate and volume are required for design purposes in most water resources projects. For this purpose, different hydrologic methods and events based on continuous hydrologic mathematical models are applied. In this research, a continuous hydrologic model, Stanford Watershed Model-IV (SWM-IV) is used for simulation of annual and monthly volumes and mean daily runoff flow produced in Roodzard representative basin with an area of 896 km2 located in southwest of Iran. The accuracy of the simulation outputs were checked using the sensitivity analysis over reasonable ranges of input sata related to Roodzard watershed. Calibration and verification of the Stanford model were performed using the data of 1976-1977 and those of the four consecutive years (1978- 1981). The output of the SWM-IV model showed that the values of annual and monthly runoff, groundwater, and monthly interflow can be simulated in close agreement and acceptable precision corresponding to the observed data. The model is also capable of combining the hydrologic components of the basin to determine the dominant flow of the study watershed. Actual evapotranspiration and annual runoff coefficients, are two other parameters that have been estimated successfully by the model. However, the coefficient of determination (R2) for the observed and predicted daily flow values ranged from 0.44 to 0.81 for the available data. Therefore, application of the model is recommended for predicting the hydrologic responses of various sizes of watershed in Iran.
S. Kouchakzadeh,
Volume 6, Issue 3 (10-2002)
Abstract

Side channel spillways have a common usage in conveyance and distribution networks, high dams, water and wastewater treatment plants, and surface drainage networks. A side channel carries spatially varied flow with increasing discharge and their water surface profiles is a main feature in the design process. Usually, the bottom width of the channel is flared in the flow direction and an end sill is also installed at the downstream end to provide a control section and to generate an even water surface profile. In this study, the impact of installing an end sill on the flow characteristics in a non-prismatic side channel is presented. Six distinct longitudinal profiles were clearly observed in each run and the difference between the mid points of the maximum and the minimum profiles of each run was used to evaluate the sill effects on the water surface profile and the energy dissipation. The results indicated that the maximum and the minimum differences are, respectively, equal to critical depth and half of it generated at the channel downstream end. Also, based on an envelope of the data, a method was proposed to determine the maximum potential impact of an end sill that might have on the flow depth, which could also be considered as a guideline in the design process.
N. Pirmoradian, A. A. Kamgar Haghighi, A. R. Sepaskhah,
Volume 6, Issue 3 (10-2002)
Abstract

This research was conducted in Kooshkak Farm Research Station of Shiraz University in 1997 and 1998 in order to determine crop coefficient and water requirements of rice, using lysimeter. The variety used was Champa-Kamfiroozi which is an early mature variety and is grown by most farmers in the area. Results showed that potential evapotranspiration varied from 3.76 to 9.34 mm/day. Penman FAO method was used in calculating reference evapotranspiration. Crop coefficient was 0.97 in the initial growth stage, 1.25 in the mid-season growth stage, and 1.09 at the time of harvest. Total crop evapotranspiration rates in 1996 and 1997 were 560 and 757 mm, respectively. Average deep percolation rates in the growing season was 3.4 and 3.5 mm/day in 1996 and 1997, respectively. Finally the total water requirements of rice in 1996 and 1997 were 1983 and 2361 mm, respectively.
M. M. Ghasemi, A. R. Sepaskhah,
Volume 7, Issue 2 (7-2003)
Abstract

In this study, the effect of deficit irrigation with every–other furrow irrigation method, which is an innovated method in farm irrigation management, was examined on sorghum (Sorghum durra L.) in Bajgah and Kooshkak areas of Fars Province. The experimental design was split plot with three main plots of irrigation interval (10, 15 and 20 days), three subplots of irrigation methods (ordinary furrow, fixed and variable every–other furrow), and 4 replications. Considering the crop production cost with real and subsidized prices of water in both areas, the net benefit per unit volume of irrigation water and benefit–cost ratio were calculated. The results showed that these economic parameters for the fixed and alternative furrow irrigation methods of 10-day intervals in both areas did not differ much with those of the ordinary furrow irrigation with 10-day intervals and were even higher in Bajgah area. Furthermore, the relationship between the amount of irrigation water, water application efficiency (Ea), water price per unit volume (Cw) and the net benefit per unit volume of irrigation water (B) with different conveyance efficiencies (Ec) were determined by multiple linear regression procedure. The regression coefficients of linear fit equation between the costs and irrigation water were determined. The results indicated that with higher price of water, the farmer should increase the farm irrigation application efficiency to avoid the economic losses.

Page 1 from 20    
First
Previous
1
...
 

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb