Search published articles


Showing 3 results for Water Efficiency

F. Ghasemi-Saadat Abadi, S. Zand-Parsa, M. Mahbod,
Volume 25, Issue 4 (3-2022)
Abstract

In arid and semi-arid regions, water resource management and optimization of applying irrigation water are particularly important. For optimization of applying irrigation water, the estimated values of actual evapotranspiration are necessary for avoiding excessive or inadequate applying water. The estimation of actual crop evapotranspiration is not possible in large areas using the traditional methods. Hence, it is recommended to use remote sensing algorithms for these areas. In this research, actual evapotranspiration of wheat fields was estimated using METRIC algorithm (Mapping EvapoTranspiration at high Resolution with Internalized Calibration), using ground-based meteorological data and satellite images of Landsat8 at the Faculty of Agriculture, Shiraz University, in 2016-2018. In the process of METRIC execution, cold pixels are located in well-irrigated wheat fields where there is no water stress and maximum crop evapotranspiration occurred. The estimated maximum values of evapotranspiration using the METRIC algorithm were validated favorably using the obtained values by the AquaCrop model with NRMSE (Normalized Root Mean Square Errors) equal to 0.12. Finally, the values of water productivity (grain yield per unit volume of evapotranspiration) and irrigation efficiency were estimated using the values of predicted actual evapotranspiration using remote sensing technique. The values of measured irrigation water and produced wheat grain yield in 179 ha were estimated at 0.86 kg m-3 and 75%, respectively.

Y. Gateazadeh, H.a. Kashkuli, D. Khodadadi Dehkordi, A. Mokhtaran, A. Assareh,
Volume 27, Issue 2 (9-2023)
Abstract

To monitor and compare the changes of salts in the soil profile around the roots of the corn plant, the plant yield, and the productivity of corn water, an Experimental was conducted in a completely randomized block of three repetitions in two crop years 2017-2018 and 2018-2019 at Ahvaz Agricultural Research Station. Experimental treatments included two subsurface drip irrigation systems with a working depth of 30 cm from the soil surface and tape irrigation and two irrigation intervals of 2 and 4 days. The results of monitoring soil solutes obtained from sampling depths (0-25, 25-50, and 75-50 cm) showed that soil salinity in the second year in both systems as a result of improving the quality of irrigation water from 3.61 dS/m to 2.01 dS/m, it was reduced by two times. The results of soil salinity monitoring showed the highest ratio of salinity reduction with a 2-day irrigation interval in both irrigation systems. The most leaching was done at the irrigation depth of 25-50 cm in the subsurface drip irrigation system and at the depth of 0-25 cm in the tape system. The highest yield of corn dry fodder was 9.13 and 7.13 tons per hectare, respectively, and the best water efficiency based on dry corn fodder at the rate of 13.74 kg/m was obtained in the strip drip irrigation system (tape) with a two-day irrigation interval and in the second crop year. Also, the results of the soil salinity measurement showed that the implementation and exploitation of the drip irrigation system can be the basis for improving the quality of the soil as the most important non-renewable resource of agriculture.

M. Saeidi Nia, H. Mousavi, S. Rahimi Moghadam,
Volume 28, Issue 1 (5-2024)
Abstract

Due to the lack of water resources and excessive evaporation in the country, it is necessary to have a detailed irrigation program and a suitable management method. The present research was conducted to investigate the effect of superabsorbent and mulch in Khorramabad in July 2022 in a factorial combination with a completely randomized design in three replications. The first experimental factor was irrigation water treatment in 4 levels including irrigation that provided 100% water requirement (I100), 80% of crop water requirement (I80), 60% of crop water requirement (I60), and 40% of crop water requirement (I40). The second factor included different corrective materials including plant mulch (M), superabsorbent (S), and control treatment (I). The results showed the maximum amount of wet and dry yield and crop height was related to I100-M treatment, i.e. 100 percent water requirement and compost corrective material, which were 89.52 tons per hectare, 29.42 tons per hectare, and 2.27 meters. The maximum wet and biological productivity for I40-S was calculated as 14.24 kg of wet matter per cubic meter of water and 4.75 kg of dry matter per cubic meter of water. The lowest wet and dry yields were related to I40-M, which decreased the yield of the control treatment by 6.5 percent and 0.9 percent. The lowest productivity was related to the I100-S treatment, which was calculated as 3.13 kilograms per cubic meter of water for biological productivity and 9.14 kilograms per cubic meter of water for wet weight productivity. In general, mulch had a better performance in the treatments where the water stress was low, but when the water stress increased, the performance of the mulch treatments decreased. In the superabsorbent matter, the treatments with complete irrigation or with less stress, yield decreased, but the treatments with increased stress showed better results than most of the corrective materials and the control treatment.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb