Search published articles


Showing 2 results for Water Entrainment

F. Kooti, S. M. Kashefipour, M. Ghomeshi,
Volume 16, Issue 59 (4-2012)
Abstract

In this paper, velocity profiles were analyzed under different conditions such as bed slope, discharge and concentration of density current, and water entrainment. Experiments were carried out in a tilting flume with the density currents being provided using salt and water solution. Results showed that the above mentioned factors have significant effects on the velocity profile characteristics. Dimensionless velocity profiles were also provided and compared for sub-critical, critical and supercritical flow conditions and the results showed that for supper critical conditions the velocity profiles are generally thicker due to the more ambient water entrainment. The coefficients of velocity profile equations were also derived for the jet and wall zones, which showed good agreements with the experimental measurements. Relative values of the velocity profile characteristics were also calculated in order to have a better understanding about the velocity profile structure.
A. Sharifnezhad, M. Kashefipour, M. Ghomeshi,
Volume 23, Issue 1 (6-2019)
Abstract

Study of Turbidity Current, as one of the most important phenomena affecting the sedimentation in the reservoirs of dams, is essential. Since most of the research studies have been conducted under experimental conditions on rigid beds, the effect of erodible bed and the formation of the bed form on the turbidity current specifications is not yet clear. Therefore, in this Research, the study of the turbidity current in two conditions of rigid and mobile bed was conducted in order to determine water entrainment specification and the effective hydraulic parameters. The results showed that water entrainment changes depended on the variation of bed roughness and the type of bed form. Also, water entrainment of turbidity current was initially reduced by about 25% with the change in the bed shear stress, relative to the rigid bed, due to formation of small bed forms; then, it increased by about 30%, forming the larger bed forms; finally it decreased with increasing the flow strength and removing the bed forms. In addition, comparison of the results of the present study with previous research showed that the formation of bed forms increased water entrainment in a constant Richardson number up to 50%.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb