Showing 5 results for Water Pollution
M Navabian , A Liaghat ,
Volume 14, Issue 51 (4-2010)
Abstract
Environment pollution is an important problem in the world. In agriculture irrigation, drainage and fertilization activities cause water resource and environmental pollution by effecting on solute, nutrient and sediment transport. Combined methods of water and nutrient management could consider in pollution transport controlling that reducing runoff and deep percolation, providing opportunity for solute infiltration, reducing sediment transport even economic and easy usage. In this research, affect of two different management in irrigation (cutback and continues) and fertilization (solid and fertigation) on nutrient loss was evaluated. Comparing nitrate, phosphor and potassium loss in different management explicate cutback flow with no uniform solid distribution of fertilizer is more useful to prevent nutrient loss. Because of similar results, increasing in fertilizer distribution in furrow length and easy usage between nitrate losses in six managements, show cutback flow with three proceeding solid, fertigation and fertigation (with 1/4, 1/2 and 1/4 ratio) fertilization was recommended replacement of cutback flow with three proceeding solid fertilization.
J. Abedi-Koupai, Z. Nasri, Kh. Talebi, A. Mamanpoush, S.f. Mousavi,
Volume 15, Issue 56 (7-2011)
Abstract
In this study, chemical quality of Zayandehrud river between Zayandehrud Regulating Dam and Nekouabad Diversion Dam, three discharging drains and one Fehlman well were measured using HPLC with determine the pollution concentration of diazinon insecticide from July 2006 to March 2007. Also, Zayandehrud’s assimilative capacity was determined. The results showed that river water and drains were not polluted to diazinon. Physical, chemical and biological factors effective in the diazinon detection were assessed. Diazinon was detected in the groundwater sample in October with concentration of 32.1 ng/L. This level was lower than the maximum permissible level for drinking water. Also, the NO-3 concentration in this month was 24 mg/L that is 2.4 times the standard level (10 mg/L). Due to the increased discharge of different wastewaters to Zayandehrud, its assimilative capacity decreased from upstream to downstream. So, prevention of use of pesticides and pre-treatment of wastewaters that are discharged to this river need more attention.
Prof. J. Abedi-Koupai, M. Fatahizadeh, Dr M. R. Mosaddeghi,
Volume 21, Issue 2 (8-2017)
Abstract
Today, modern irrigation systems are constructed at a very high cost to operate for optimal use of water and soil. Lack of appropriate technical, social and economic studies, caused high maintenance costs of these facilities during operation. Water resources have been polluted due to industrial development, increasing human population and non-compliance with environmental standards. Most of hydraulic structures are built in areas with poor water quality. Furthermore, engineering properties of fine-grained soils, especially the clay soils, depend on factors such as salinity of solute in the pore water. So that any change in salinity of solute leads to change in the physical and mechanical properties of soils, and consequently make damage to hydraulic structure. This study investigated the effect of water salinity on engineering properties of fine-grained soils. For this purpose, NaCl, with 5 different levels (0, 0.1, 0.2, 0.41 and 0.72 mol/L) was added to the soil and the mechanical properties of soil including compaction, shear parameters, Atterberg limits and consolidation parameters were investigated. The results showed that the addition of NaCl had made no significant changes to the maximum dry unit weight and optimum moisture content of the soil, but it reduced cohesion of soil and increased the internal friction angle .Also, Limit Liquid (LL) are decreased, but it had little effect on the Plastic Limit(PL) of soil.
F. Masoudi, M. Shirvani,
Volume 21, Issue 4 (2-2018)
Abstract
Water and soil pollution with heavy metals has become a worldwide environmental issue. Therefore, development of efficient and low-cost methods for removal of metals from water or metal stabilization in soil has been identified as priority research areas. Biochar, produced from plant biomass and agricultural wastes, has recently been used to remove heavy metals from aqueous solutions as an effective sorbent. In this study, biochars were made from pyrolysis of palm tree residues at different temperatures of 200, 400 and 600 °C. The prepared biochars were then used to remove Ni from aqueous solutions in batch systems without pH adjustment and with pH adjustment at 7. To investigate Ni sorption rate, kinetic experiments were also carried out at a Ni concentration of 10 mg/L. The results of kinetic tests showed that the biochar prepared at 600 °C had more Ni sorption rate with equilibration time of about 5 h. Power function and Elovich models were the best equations fitted the kinetic data. Langmuir and Freundlich isotherms described sorption of Ni on the sorbents very well. According to the Langmuir model predictions, the biochar produced at 600 °C and the palm raw residues had highest and the lowest capacity to sorb Ni from the solution, respectively, and the biochars produced at 200°C and 400°C were intermediate in this respect. Both the capacity and affinity of the biochars for Ni sorption increased with pH. Overall, under the experimental conditions applied in this study, the biochar prepared at 600 °C showed the highest efficiency for Ni removal from aqueous solution.
M. Mirjani, M. Soleimani, V. Salari,
Volume 24, Issue 1 (5-2020)
Abstract
Growing concerns about water pollution and its potentially harmful effects on human being have stimulated serious efforts to develop reliable biological monitoring techniques. The bioluminescent analysis is one of the most promising approaches for the biomonitoring of the environment, due to the sensitivity of the luminescent system to even micro quantities of the pollutants. The aim of the current study was to assess the petroleum compounds toxicity using Vibrio fischeri bacterium. The growth pattern of the bacterium was determined in photobacterium broth using the optical density measurement at 600 nm, which showed the optimum growth time of 16-18 hours after inoculation. In this research, the effects of environmental parameters such as temperature, pH and various concentrations of oil on the growth and luminescence of Vibrio fischeri were examined. The results revealed that the optimum growth conditions of the bacterium after 16 hours included the temperature of 25 °C and pH 7. Besides, the growth and luminescence intensity of Vibrio fischeri were a function of total petroleum hydrocarbon concentrations in the medium, which were significantly reduced in oil concentrations by more than 4% w/v. Therefore, the Vibrio fischeri could, therefore, have the potential for monitoring of petroleum pollutants in the aqueous media.