Search published articles


Showing 4 results for Water Repellency

M. Norouzi, H. Ramezanpour,
Volume 16, Issue 61 (10-2012)
Abstract

Flooding and fire are important phevent which could impact the forests of north of Iran periodically. These phenomena could have undesirable effects on properties and quality of soil. This study was conducted in order to investigative the effects of flooding and fire on some soil properties in Lakan forest, Guilan province. Soil sampling was carried out on three replicates from three depths 0-3, 3-6 and 6-9 cm in flooding, burned and intact regions. Results of this study indicated that clay, silt, pH, electrical conductivity (EC), Na and K values (in all of depths), organic carbon (OC) and N values (in second and third depths) significantly increased and sand content (in all depths) significantly decreased in flooding soils in comparison with intact soils. In burned soils, pH values (in first and second depths), EC, K and P values (in first depth) significantly increased and clay, OC and N values (in first depth) significantly decreased in comparison with intact soils. Soil water retention capacity showed that the flooding and burned soils had maximum and minimum levels soil moisture that can be related to clay and OC changes. Results of WDPT test showed the water repellency in the first depth in burned soils. Generally, flooding and fire phenomena significantly affected physical and chemical properties.
M. Kermanpour, M. R. Mosaddeghi, M. Afyuni , M. A. Hajabassi,
Volume 19, Issue 73 (11-2015)
Abstract

Petroleum pollution is an important environmental issue in most of the countries especially those have an oil industry. This study was conducted to investigate the effect of petroleum pollution on soil water repellency and its relation to soil structural stability in Bakhtiardasht area, Isfahan. Polluted and adjacent non-polluted locations were selected to be representative in the green space around the Isfahan Oil Refinery. Soil water repellency was assessed using water drop penetration time (WDPT) in the polluted locations. Soil sample with least aggregates disturbance were collected and selected soil physical and chemical properties were measured. Soil structural stability was evaluated using the wet-sieving method and mechanically dispersible clay (MDC) structural stability indices of mean weight diameter (MWD) and geometric weight diameter (GMD) of aggregates and MDC were then calculated. Results showed that the positive effect of petroleum pollution on the MWD and GMD become significant. Negative impact of petroleum pollution on MDC was also significant. Increment of total petroleum hydrocarbons (TPHs) increased the soil water repellency. A positive correlation was observed between soil water repellency and GMD. However, TPHs concentrations greater than 6.4% decreased the MWD and GMD presumably due to anionic repulsion between clay particles and hydrocarbon functional groups. Although greater water repellency increased soil structural stability in the polluted locations when compared to control locations, however, diminished water retention of polluted soil has created an unfavorable condition for the green space in the area.


Sh. Ghorbani Dashtaki, N. Karimian, F. Raeisi,
Volume 21, Issue 1 (6-2017)
Abstract

The use of organic matter such as urban sewage sludge may help sustainable soil fertility via improving the physical, chemical and biological soil characteristics. The main purpose of this study was to determine the effect of urban sewage sludge on chemical properties, soil basal respiration and microbial biomass carbon in a calcareous soil with silty clay loam texture. Therefore, three levels of water repellency (zero, weak and strong) were artificially created in a silty clay loam soil by adding urban sewage sludge (S0=0:100; S50=50:50 and S80=80:20 sludge weight: soil ratio). Water repellency was determined by water drop penetration time (WDPT) method. Also some chemical properties such as soil acidity (pH) and Electrical Conductivity (EC), Soil Organic Carbon (OC), soluble sodium (Na+) and soluble potassium (K+) were measured. The samples were incubated at 23-25 ºC for 30 days and their moisture was maintained at 70-80 % under field capacity and soil basal respiration and microbial biomass carbon of incubation period were evaluated. The results showed that the effect of urban sewage sludge on chemical properties was significant (P ≤0.0001). The application of urban sewage sludge led to significant increase in basal respiration (16 and 27 times) and microbial biomass carbon (15.2 and 26.5 times) in the water repellency soils (S50 and S80) compared to control soil. The observed positive effect of sewage sludge might be due to a high content of organic carbon and nutrients in urban sewage sludge and decrease in the labile organic matter and nutrients during incubation period.
 
 


F. Hosseini, M. R. Mosaddeghi, M. A. Hajabbasi, M. R. Sabzalian, M. Soleimani, M. Sepehri,
Volume 21, Issue 2 (8-2017)
Abstract

Soil water repellency can affect several soil properties such as aggregate stability. Soil texture and organic matter are two main internal factors responsible for the variability of soil water repellency. Major sources of organic matter in soil include plant residues, and exudates of plant roots and soil microorganisms. Tall fescue (Festuca arundinacea Schreb.) as an important cool-season perennial forage grass is usually infected by a fungal endophyte (Epichloë coenophiala) which often enhances resistance to biotic and abiotic stresses as well as altering the litter decomposition rate and soil properties. In this study, the effects of endophyte-infected (E+) and endophyte-free (E−) tall fescue residues (in three different levels of 0, 1 and 2%) on soil organic carbon, basal microbial respiration, water-dispersible clay and water repellency index (determined by intrinsic sorptivity method) were investigated in four texturally-different soils in the laboratory. E+ and E− tall fescue residues were completely mixed with moist soil samples and then were incubated at 25 °C. During two months of incubation period, the amended soil samples were subjected to 10 wetting and drying cycles and then, the above-mentioned soil properties were measured. The results indicated that soil organic carbon and water-dispersible clay were greater, while basal soil respiration and repellency index were lower in fine-textured soils. Water repellency index was increased by production of hydrophobic substances (for the rate of 1%) and was reduced by induced greater soil porosity (for the rate of 2%). Presence of endophyte in plant residues had no significant effect on water sorptivity, ethanol sorptivity and water repellency index; nevertheless, E+ residues increased soil organic carbon and decreased water-dispersible clay significantly. Overall, it is concluded that tall fescue residues, especially those with E+, can improve soil physical quality due to improving soil organic carbon storage and water repellency index and decreasing water-dispersible clay (as an index for aggregate instability). These E+ species and the residues have great potential to be used in sustainable soil conservational managements.
 



Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb