Showing 2 results for Water Table.
S. Azizpour, P. Fathi, K. Nobakht-Vakili,
Volume 16, Issue 60 (7-2012)
Abstract
Soil saturated hydraulic conductivity (k) and effective porosity (f) are the most important parameters to simulate the processes associated with irrigation, drainage, hydrology, leaching and other agricultural and hydrological processes. Present methods to measure these parameters are often difficult, time consuming and costly. Therefore, a method which provides more accurate estimates of these parameters is essential and is considered inevitable. The purpose of this study was simultaneous estimation of k and f using approach inverse problem. In this study, analytical drainage model of Glover-Dam was used to simulate the inverse problem method. Also, genetic algorithm was used as an optimization technique for determination of optimal values of k and f. In order to measure the data required for calibration and evaluation of the proposed inverse problem model, a physical model was designed and constructed in the laboratory. The results showed that the proposed method is good for simultaneosly estimating simultaneous soil k and f. Also with variable f assumption, the prediction error of water table around the drainage was reduced significantly.
S. M. Mousavi, A. Hoshmand, S. Bromandnasab, M. Yazdani,
Volume 16, Issue 60 (7-2012)
Abstract
The common method of irrigating rice in paddy fields of Iran, like most countries, is flooded irrigation. The water required in this method is too much. However, because of water shortage in recent years, and malfunctioning of irrigation systems, it is needed to use water in a reasonable way and increase water use efficiency. Therefore, it is necessary to know water loss amounts at the paddy fields. The deep percolation (DP) was measured by closed- and open-bottom rings in 4 locations, and 7 sites at each location, of paddy fields in Somae-Sara city, Guilan province. These locations were selected on the base of different physiographic units. The average DP of these locations was also monitored during plant growth season. The measurements were performed twice a week. Results showed that the rate of DP varied during the season, and could take a positive or negative value. The most important factors of these variations were the lateral seepage (from surrounding rice fields) and the high perched groundwater table in paddy fields.