Search published articles


Showing 7 results for Water Use Efficiency.

H. Ghadiri, M. Majidian,
Volume 7, Issue 2 (7-2003)
Abstract

In order to investigate the effects of different nitrogen fertilizer levels and water stress during milky and dough stages on grain yield, yield components and water use efficiency of corn hybrid SC 704 (late maturing, non prolific and dent type), a field study was conducted. The factorial design of the study comprised of a randomized complete block with four replications. Four levels of nitrogen fertilizer (0, 92, 184 and 276 kg/ha nitrogen) along with three levels of irrigation (water stress imposed at milky stage, dough stage and a season-long optimum irrigation) were used as treatments. Results showed that water stress during milky and dough stages significantly decreased grain yield and thousand kernel weight. Also, effect of nitrogen fertilizer on grain yield, kernel number per ear, kernel weight per ear and thousand kernel weight was significant. Maximum grain yield was produced with 276 kg/ha nitrogen, although no significant differences were found among 92, 184 and 276 kg/ha nitrogen levels. Regarding water use efficiency during water stress, maximum efficiency was observed at milky stage but, as water stress declined with optimum irrigation, water use efficiency decreased.
Gh. Khajouei Nejad, H. Kazemi, H. Alyari, A. Javanshir, M. J. Arvin,
Volume 9, Issue 4 (1-2006)
Abstract

This study was conducted to evaluate the effects of four levels of irrigation (irrigation of plants after I1 = 40, I2 =60, I3 = 80 , and I4 = 100mm of evaporation from class A pan) and four plant densities(D1 = 30, D2 = 40, D3 = 50 and D4 = 60 plants/m2) on the seed yield and seed quality in three soybean cultivars(V1=Hobit, V2=Williams and V3=Hill) in a split factorial design, based on the completely randomized blocks, with three replication for two years(2001 and 2002). The Irrigation treatments were assigned to the main plots, and the plant densities and cultivars to the sub plots. Results indicated that soybean seed yield was influenced by the different irrigation and plant density levels in the both years. Irrigation levels I2 produced the highest and I4 the lowest seed yield. It was also revealed that the plant density D3 produced the highest and D1 the lowest seed yields. Among the cultivars under investigation, V2 produced the highest and V3 the lowest seed yield . Seed oil and its protein contents both were affected significantly by the irrigation levels, plant densities and cultivars in both years. The plants receiving I1 treatment had the highest and those having I4, the lowest percentages of seed oil. Changes in the plant densities also affected seed oil and protein content. The plant density of D1 caused the seeds to have the highest oil and lowest protein percentages. However, D4 decreased oil and increased protein percentages. The highest water use efficiency was obtained from I3 and that of the lowest value from I1. The results also indicated that D4 had the highest and D1 the lowest water use efficiencies. Therefore, it could be concluded that the water use efficiency can be increased by increasing the plant density per unit area. The highest efficiency for biological and grain yield belonged to V2 and V1 respectively where as the lowest efficiency for those two mentioned characters belonged to V1 and V3, respectively. However, the treatment I2V2D2 is recommended for higer the seed yield production per unit area.
A Sheinidashtegol, H.a Kashkouli, A.a Naseri, S Boromandnasab,
Volume 13, Issue 49 (10-2009)
Abstract

Sugarcane has been cultivated in an extensive area in Khuzestan and irrigated by hydro-flume or siphon and furrow. In a field experiment during 2005-6 at Amir Kabir Agro-Industry, Khuzestan, the effect of every other-furrow irrigation method was studied on sugarcane in regard to irrigation water volume, water use efficiency and quality and quantity of sugarcane. The experiment was conducted in a completely randomized design with three irrigation treatments, including conventional method (blank), variable every other furrow(alternative furrow) and fixed every other furrow. This experiment was conducted by cv. Cp69-1062 sugarcane. The results showed that water use efficiency rates were 0.41, 0.58 and 0.7 kg/m3 for conventional, fixing furrow and alternative, respectively. However, water use efficiency rates were not significantly different in treatments. It had minimum amount of water use efficiency in every other furrow treatments. Maximum water use efficiency, quality and quantity of sugarcane were obtained every other irrigation. Maximum irrigation water was used in conventional treatment and resulted in minimum irrigation, quality sugarcane and water use efficiency. It produced 14.5 ton/ha sugar for 20604 m3/ha application of irrigation. Sugarcane quality and quantity characteristics in variable treatments, except for length number per hectare, were not significant.
P. Shahinrokhsar, M. E Asadi,
Volume 16, Issue 61 (10-2012)
Abstract

Modification of irrigation scheduling and management improvement of irrigation systems are two essential factors that have significant impact on agricultural water use efficiency. Therefore, a field experiment was conducted to evaluate the effect of tape drip irrigation (T) and furrow irrigation systems (S) under different irrigation regimes on yield and yield components of soybean in growing season of 2006-2007 at Gorgan Agricultural Research Station in north part of Iran. The experiment was laid out in a split plot design in a randomized complete form where each treatment was replicated three times. The main plots were irrigation systems of tape and furrow, and three irrigation regimes 100 (I100) , 75 (I75) and 50 (I50) percent of total irrigation requirement were chosen as secondary plots. Results showed that thousandgrain weight (gr) and plant height (cm) in furrow irrigation were significantly more than the tape drip irrigation method. Also significant differences between different irrigation regimes in terms of plant height, node numbers and yield were observed. So, I100 and I50 had highest and lowest values, respectively. In terms of irrigation system, 63 percent of water consumption was reduced in tape drip irrigation method. Also, the results indicated that higher and lower water use efficiencies were obtained from tape drip irrigation method with I50 treatment (1.09 kg m-3) and furrow irrigation with I100 treatment (0.50 kg m3), respectively.
S. Samadvand, M. Tajbakhsh, K. Anvari, J. Ahmadaali,
Volume 18, Issue 70 (3-2015)
Abstract

An experiment was performed at the Miyandoab Agricultural Research Station to study yield and water use efficiency of furrow and tape irrigation systems in one-row and two-row planting patterns, and to investigate density of grain corn SC704. The experimental design was a completely randomized block arranged in Strip Split Plots with three replications in 2010. Irrigation treatments were applied in vertical plots, and planting arrays of different densities were applied in horizontal plots in the form of split plots. The vertical plots were comprised of four irrigation treatments, including three levels (80%, 100% and 120%) of water requirement by use of drip tape irrigation and 100% of water requirement in furrow irrigation, and the horizontal factor was a planting array in the form of single-row and two-row planting patterns and the sub factor was comprised of three levels: 75, 90 and 105 thousand plants per hectare. The results showed that furrow irrigation had the highest rate of grain yield, about 18.6 ton per hectare, and the treatments of tape irrigation of 120%, 100% and 80% had 18.4, 18.2 and 14.9 tons per hectare, respectively. Although the furrow irrigation treatment had higher yield than the rest, there was no significant difference between treatments except for the 80% of tape irrigation. Thus, by utilizing tape irrigation without a great decrease in the yield, water use efficiency improved. The comparison between treatments of tape irrigation of 80%, 100%, 120% and furrow irrigation led to grain yields of 2.3, 2.2, 1.9 and 1.4 kg/m3, respectively. Also, the highest water use efficiency and maximum yield were obtained from 90000 plants per hectare.


F. Sajadi, H. Sharifan, S. Jamali,
Volume 22, Issue 3 (11-2018)
Abstract

Yield is a function of root distribution and activity. In flood conditions, root growth and efficiency are essential for crop productivity. The goal of this study was to investigate the effect of different irrigation regimes on the root development, yield and yield components of green pepper (green Hashemi cultivars). This study, which was based on a completely randomized design with three replications under greenhouse conditions, was done at Gorgan University of Agricultural Sciences and Natural Resources in 2016. Different irrigation regimes consisted of 3 levels (100, 125 and 150 percent of water requirement). The results showed that the effect of different irrigation regimes on root volume, root length, root area and number of fruit was significant at 1 percent level (P<0.01), but water use efficiency, and fresh and dry weight of fruit were significant at 5 percent level (P<0.05). The results also revealed that green pepper plants were sensitive to over irrigation. Increasing irrigation levels from 100 to 125 percent of pan evaporation resulted in the reduction of root volume, root length, water use efficiency, number of fruits, and pepper fresh weight to 20, 13.8, 26, 29and 6.4 percent, respectively. As the conclusion, with the increase in water irrigation level, the fresh weight of the fruit was significantly decreased.

M. Amerian, S. E. Hashemi Garmdareh, A. Karami,
Volume 24, Issue 3 (11-2020)
Abstract

Today, one of the biggest challenges facing the world is the lack of water, especially in the agricultural sector. In this research, we investigated the effects of irrigation method and deficit irrigation with the urban refined effluent on biomass, grain yield, yield components and water use efficiency in single grain crosses 704 maize. This research was carried out in a randomized complete block design with two irrigation systems (furrow irrigation (F) and drip irrigation (T)) and three levels of deficit irrigation treatments of 100 (D1), 75 (D2) and 55 (D3) percent of water requirements in three replications, in 2017, at the collage of Abourihan Research field, University of Tehran, in Pakdasht County. The results showed that the highest yield of biomass was 2.426 Kg m-2 for full drip irrigation treatments; also, there was no significant difference between D1 and D2 treatments. The highest grain yield was 1.240 kg m-2 for the complete drip irrigation treatment. The highest biomass water use efficiency was obtained for the treatment of 75% drip irrigation, which was equal to 5.3 kg per cubic meter of water. Therefore, a drip irrigation system with 75% water requirement is optimal and could be recommended.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb