Search published articles


Showing 56 results for Watershed

Sayed Farhad Mousavi, Mohammad Nekoei-Meher, Mohammad Mahdavi,
Volume 2, Issue 2 (7-1998)
Abstract

As unit hydrograph is an important item in flood estimation of the rivers and since flood hydrograph and simultaneous rainfall hyetograph is needed to derive a unit hydrograph, hydrologists recommend synthetic unit hydrographs for areas lacking these hydrometeorological data. A research was conducted in the Zayandehrud-dam watershed (Pelasjan sub-basin) to test the efficiency of synthetic unit hydrographs (Snyder, SCS, and Triangular methods) in hydrological evaluations. For the purposes of this study, natural and synthetic unit hydrographs were determined and compared, using all morphologic, hydrometric and rainfall data. The results showed that Triangular and SCS methods fit natural unit hydrographs better than Snyder method does, but peak instantaneous flow is estimated to be higher than the observed flow. So, the constant 2.083 in peak flow equation is recommended to be changed to 1.74 in this watershed. The Snyder method predicts good peak flows, compared with the other two methods. Generally, it is concluded that Triangular, SCS, and Snyder methods are ranked 1 to 3 for determination of synthetic unit hydrographs in this watershed.
Davar Khalili, Abolghassem Yousefi,
Volume 2, Issue 3 (10-1998)
Abstract

Physiographic characteristics of Atrak Watershed described by a number of parameters were used in regression models to estimate maximum daily discharges. These parameters were sub-watershed area, main waterway length, mean waterway slope, mean watershed elevation and mean watershed slope. Based on the results of correlation between the above parameters and their suitability for discharge estimation, three regression models were developed for further analysis. Model 1 applied area as the independent variable to estimate maximum daily discharge. In model 2 area and mean watershed elevation were the independent variables. Model 3 used area and mean waterway slope as the independent variables. Even though the results of testing did identified all three models as appropriate for application, further testing selected model 1 as the most appropriate. Recommendations were made for model application to similar watersheds lacking the necessary data.
M.a. Izadbakhsh, S.s. Eslamian, S.f. Mosavi,
Volume 5, Issue 2 (7-2001)
Abstract

Flood is one of the catastrophic events that has attracted the hydrologists’ attention. In this research one of the important flood indices, i.e. maximum-daily mean-discharge, was determined for several western Iran watersheds, namely, in the catchments of Gamasiab, Qarasou, Saimare, Kashkan, Sezar and Abshineh. Daily data were prepared from stream-gauging stations and a 30-year concurrent period was selected.

 Flood frequency analysis was performed using HYFA and TR computer programs and optimum distributions were chosen by goodness of fit tests. Extreme flow values having different return periods of 2, 5, 10, 25, 50, 100, 500 and 1000 years were calculated. Modeling was done with regional analysis using multiple regression technique between maximum-daily mean-discharge and physiographic characteristics of the basins. The most important parameter for the selection of the model was the adjusted coefficient of determination while significant level, standard error and observed discharger vs. computed discharge plot acted as controlling parameters. Finally, different models with different parameters were selected from power, exponential, linear and logarithmic forms. The results showed the power model to be the best among the four types. The main channel length, drainage density and time of concentration were the most effective parameters on flow. After analyzing the errors, it appeared that increasing the return period would cause an increase in the model error. At 1000-year return period, the error reached 32.2%.


S. Amin, A. M. Ghafuri Roozbahani,
Volume 6, Issue 3 (10-2002)
Abstract

Prediction of watershed responses and simulation of runoff rate and volume are required for design purposes in most water resources projects. For this purpose, different hydrologic methods and events based on continuous hydrologic mathematical models are applied. In this research, a continuous hydrologic model, Stanford Watershed Model-IV (SWM-IV) is used for simulation of annual and monthly volumes and mean daily runoff flow produced in Roodzard representative basin with an area of 896 km2 located in southwest of Iran. The accuracy of the simulation outputs were checked using the sensitivity analysis over reasonable ranges of input sata related to Roodzard watershed. Calibration and verification of the Stanford model were performed using the data of 1976-1977 and those of the four consecutive years (1978- 1981). The output of the SWM-IV model showed that the values of annual and monthly runoff, groundwater, and monthly interflow can be simulated in close agreement and acceptable precision corresponding to the observed data. The model is also capable of combining the hydrologic components of the basin to determine the dominant flow of the study watershed. Actual evapotranspiration and annual runoff coefficients, are two other parameters that have been estimated successfully by the model. However, the coefficient of determination (R2) for the observed and predicted daily flow values ranged from 0.44 to 0.81 for the available data. Therefore, application of the model is recommended for predicting the hydrologic responses of various sizes of watershed in Iran.
M. Sheklabadi, H. Khademi, A. H. Charkhabi,
Volume 7, Issue 2 (7-2003)
Abstract

Soil erodibility in arid regions, particularly in less developed soils, greatly depends on parent material. The objectives of this study included comparison of the potential of runoff and sediment production in soils with different parent materials and identification of the highly sensitive parent materials in Golabad watershed, 60 km northeast of Isfahan, with about 160 mm of annual precipitation and various geological formations, as one of the highly erodible watersheds in Iran. Soils formed on twelve different parent materials were selected. Rainfall simulator was run for 80 minutes on three replicates of each soil. To have an idea about the rate of runoff and sediment generation with time, runoff loaded with sediment was collected every 10 minutes using plastic containers. After measuring the volume of each runoff sample, it was dried and the amount of sediment was measured. The mechanical parameters of the applied rain were: intensity about 40 mm/hr, rain drop average diameter: 6.56 mm plot size: 1 m2 and kinetic energy of 13.7-17.2 J/m2.mm. Based on the rainfall simulation experiments, soils formed on green andesite and slightly dissected alluvium derived from both sedimentary and igneous rocks created the highest amount of runoff. They also created runoff much more rapidly as compared to other soils. In contrast, soils developed on granodiorite and moderately undulating alluvium produced the least volume of runoff. Furthermore, maximum quantity of sediment was produced from the soils occurring on green andesite and shale. The least sediment yield was observed in soils developed on granodirite and moderately undulating alluvium. Soils formed on shale created the highest sediment concentration and no significant differences were observed among other soils. Based on the results obtained, soils were ranked according to sensitivity to erosion. It is concluded that soil parent materials have a high influence on the production of runoff and sediment yield in Golabad watershed.
A. Esmaili Nameghi, A. Hassanli,
Volume 11, Issue 1 (4-2007)
Abstract

One of the simple methods for erosion control, flood mitigation and flood damage reduction in the streams is building the checkdams. The present study was carried out to evaluate the performance of checkdams, location across the streams in the retention of the fine sediments in Droudzan watershed in Southern Iran. For this purpose, a number of streams with many stabilized check dams which were more than 27 years old were selected. For each stream, three check dams (one at the far beginning (upstream), the second one at the middle and the third one at the far downstream) were selected. In each stream, a number of samples were taken from retained sediment behind the selected check dams and also original soil was taken from both sides of the same check dams. Laboratory analysis on the size of particles and also texture of soil and sediment samples showed that in general, soils taken from both sides of the check dams were finer than sediment behind the same check dams. Comparison of particle sizes showed in all streams except Joobkhaleh (with extensive tree coverage) the performance of the third check dams (far downstream) in fine sediment retention is much better than the second one (at the middle) and the second one is more effective than the first one (upstream). Comparison of sands, silt, and clay percentage of soil and sediment also showed that in all streams except Joobkhaleh the clay and silt percentage behind the third check dam is more than the second check dam and that of the second check dam is more than the third one (upstream). In the same way, results showed that the sand retained behind the first check dam, was more than the sand behind the second and first checkdams, respectively. Therefore, if the retention of the fine sediments is the main purpose of the check dam construction, it is recommended that they be built in the far downstream rather than in the upstream of waterways.
A.m. Mohammadi, S.j. Khajeddin, S.a. Khatoonabadi,
Volume 11, Issue 40 (7-2007)
Abstract

Northern watershed of Kouhrang River with the area of 68437 hectares is located in northwestern Chahar Mahal and Bakhtiary province within 49ْ 54ً to 50ْ 9ً E longitude and 32ْ 83ً to 32ْ 36ً N latitude.Making a balance and equilibrium between the number of ranchers, the rangeland production potential and appropriate flock size in each utilization unit is a necessary task. It is a matter of importance to determine suitable ranch size based on pastoral household but suitable household livelihood as well. The main goal of this study is to determine utilization unit size based on ecologic and socioeconomic factors for each household. Along with detecting the ranch allotments, the range capacity and its productivity potential were studied. Then, based on expenses and the revenues resulting from herdship,(on ranges), the suitable flock size for fulfillment of the household expenses regarding the range utilization periods, the suitable range size per household was determined. 10 vegetation types with 0.91 AUM per hectares grazing capacity were detected in studied area. There are 46 range allotments and some parts of other 6 range allotments in studied area with average area at 1510 hectares. Average pastoral household is 36.8 per unit range allotments. Pastoral households share at rangelands is 41 hectares now. The minimum and suitable ranch area for each pastoral household which can provide annual needs and costs is 520 hectares and 142 animal unit at a mix flock at 3 to 2 ratio of sheep to goat for a 100 – dayes grazing season. The result of this study showed that production potential at each range unit is influenced by flock size, household share on farming lands, and the household numbers on each ranch unit. Ranch unit and the livelihood level, have significant influence at 5% level on suitable ranch size per household.
M. Vafakhah, G.h. Shojaei,
Volume 11, Issue 42 (1-2008)
Abstract

  Continuous measurement of river discharge is a hard and expensive task in hydrology. To overcome this problem, the stage readings at hydrometric gauges are permanently taken and the discharge of any time at which the actual discharge is unavailable will be estimated through a relationship between discharge and stage. To study the stage-discharge relations and the capability of long-term data in establishing a permanent stage-discharge relationship, and also to determine the best time to measure the discharge of rivers, a study was conducted at the hydrometric station of the Zayandehrud regulatory dam using data from 1990 to 2003. The data were analyzed using simple regression analysis, the percentage of relative error and factor analysis. The results indicated that the best model to show the stage-discharge relation at the studied station is a power function model. Moreover, the model used for every year can only be used for that year. The results also showed that the most suitable times for the measurement of discharge are July, December and March.


S.a.a. Hashemi, M. Arab Khedri,
Volume 11, Issue 42 (1-2008)
Abstract

  In order to quantitatively evaluate the sediment yield in ungauged basins, it is necessary to use empirical models. The EPM model, as a model which is using in Iran, has sometimes been evaluated. Most evaluations have often been conducted by using river's sediment information and direct measurements of dam reservoir sedimentation have been less used, while the sediment measurement method on reservoir is more carefully. 9 small watersheds from Semnan province (Iran) were selected in this research. There is a small earth dam which have been built on the outlet of each watershed in the past years that them age is 10 years. These dams have not been weirs since they have been building to now. Therefore total of sediment yield volumes of each watershed are entrapped in the dam reservoirs. The volume of sediments deposited in reservoir were calculated by surveying. Sediment's apparent specific weights were measured in each reservoir and the volume of sediments transformed into sediments weight. By EPM model the volume and weight of sediment yield were estimated. Values of sediment yield measured in reservoirs were compared with estimated values by t-test. The results showed that at level 5%, there was not any significant difference between sediment yield values estimated in reservoirs by EPM model in comparison with values of volume and weight which were measured. But determination of performance and relative root mean square error showed that EPM model has low efficiency for estimation of sediment yield in the case study of watersheds.


H Pourghasemi, H Moradi, M Mohammadi, M Mahdavifar,
Volume 12, Issue 46 (1-2009)
Abstract

One of our first activities in natural resources management and development programs is to acquire knowledge on Landslide Susceptible areas. The aim of this research is landslide hazard zonation in some part of Haraz watershed between Vana village and Emam zadeh Ali, using fuzzy membership functions and fuzzy operators. At first landslide points were recognized using arial photography and field studies. Afterwards, the inventory map of landslide was prepared. Then, each effective element in landslide such as: slope, aspect, elevation, lithology, landuse, distance of road, distance of drainage, distance of fault and precipitation map was prepared in GIS environment.These data were saved in raster and vector format in ILWIS software and used for analysis with theory of fuzzy sets. Fuzzy analysis was made by IDRISI software, after assigning value and fuzzy membership functions. In this research we used different fuzzy operators such as (And, Or, Sum, Product and Gamma). Results showed Gamma fuzzy operator had the best accuracy ( ) in making landslide susceptibility map in study area.
Sh Mohammad Nejad Kiasari, M Safaee, Sh Nourozi, H Ahmadian, A Mataji,
Volume 13, Issue 48 (7-2009)
Abstract

Determination of suitable species is the most important factor in success of forestation in unfavorable conditions. One of the least costly and the shortest ways for introduction of adaptable species in an area is recognition of the plants that grow naturally. The objective in this study was to find out the effects of protection and water spreading operations on the quantitative improvement of Greek Juniper seedlings. In this study, the areas of water spreading station (Research station of Poshtkoh Water spreading) and an area in western section of water spreading station (an area as control) along the Poshtkoh watershed were chosen. The research was performed on counting of Greek Juniper (Juniper excelsa) in each of two areas. The ratio estimation method was used in a randomized systematic design in strips with the width of 50 meters and 200 meters apart for registration of qualitative parameters of Greek Juniper (Juniper excelsa). The total surface of areas was 600 ha and inventory with intensity of 16 percent has been done. This study showed that in spite of the less number of Greek juniper trees per ha in the station (0/104) in relation to the number of Greek juniper trees per hectare out of the station (0/666), the number of the Greek juniper seedlings in the station was eight times (8.34) more than the number of the Greek juniper seedlings out of the station. As to the effect of protection and water spreading operations on natural growth and increase of number of Greek Juniper seedlings in the station, forestation using this species in this area is recommended.
M Motamednia , S.h.r Sadeghi, H Moradi, H Asadi ,
Volume 14, Issue 52 (7-2010)
Abstract

An extensive data collection on precipitation and runoff is required for development and implementation of soil and water projects. The unit hydrograph (UH) is an appropriate base for deriving flood hydrographs and therefore provides comprehensive information for planners and managers. However, UH derivation is not easy job for whole watersheds. The development of UH by using easily accessible rainfall data is then necessary. Besides that, the validity evaluation of different statistical modeling methods in hydrology and UH development has been rarely taken into account. Towards the attempt, the present study was planned to compare the efficiency of different modeling procedures in hydrograph and 2-h representative UH relationship in Kasilian watershed with concentration time of some 10h. The study took place by using 23 storm events occurred during four seasons within 33 years and applying two and multivariable regression models and 36 variables. According to the results, the median of estimated errors in estimation of 2-h UH dependent variables for verification stage varied from 37 to 88%. The results verified the better performance of cubic and linear bivariate models and logarithm-transformed data in multivariable model as well. The efficiency of multivariable models decreased when they were subjected to principle component analysis. The performance of backward method was frequently proved for estimation of dependent variables based on evaluation criteria, whereas the forward was found to be more efficient for time-dependent factors estimation.
M Bashiri Seghale, S.h.r Sadeghi, A.s Rangavar ,
Volume 14, Issue 52 (7-2010)
Abstract

Erosion plots are basically used for studying erosion processes and many related problems. However, the possibility to extend the results of experimental plots to surrounding watersheds is rarely taken into account. In the present study, an attempt was made to study on the accuracy of soil erosion plots in estimation of runoff and sediment yield from small watersheds. Towards this attempt, 12 experimental plots with length of 2, 5, 10, 15, 20 and 25 meter were installed on two north and south facing slopes in Sanganeh watershed, northeastern Razavi Khorasan Province with an area of ca. 1 ha. The performance of the plots in estimation of runoff and sediment was controlled by data collected at the main outlet associated with 12 storm events occurred during November 2006 to June 2007. The results showed that the accuracy of plot estimates on sediment and runoff improved while the plot length increased. The optimal length for estimation of sediment and runoff parameters was found to be equal to average slope length and more than 20m.
M. Ozhan , M. Mahdavi , Sh. Khalighi Sigaroudi , A. H. Haghiabi ,
Volume 14, Issue 54 (1-2011)
Abstract

Direct measurement of discharge in rivers is time-consuming and costly, and sometimes, impossible under flood conditions because of the high speed of water, its transitory nature, and the existence of different floaters along the water. Therefore, the discharge-stage relation, known as Discharge Rating Curve is used. Moreover, to design hydraulic constructions, the maximum flood discharge and its maximum height are required. Therefore, to calculate the flood discharges, one should extend the discharge rating curve by using appropriate methods. In this study, in order to determine the best method for the extension of discharge-stage curve, and to estimate the corresponding discharge with high stages, the logarithmic method, the Manning method, the Chezy method, and the Area-Velocity method in 13 hydrometric stations at the Karkheh watershed in Lorestan province were compared. Data measured at each station were gathered for a ten-year statistical period. Results of calculating the Root Mean Square Error (RMSE) and the Mean Bias Error (MBE) for each method showed that the logarithmic method was more accurate than other methods, and it was more appropriate for the extension of the curve at the low average discharge stations. The Area-Velocity method, after the logarithmic method, especially at the stations with higher average discharge showed good results. The Manning and Chezy methods showed the least accuracy.
N. Khorsandi, M. H. Mahdian, E. Pazira, D. Nikkami,
Volume 15, Issue 56 (7-2011)
Abstract

Rainfall erosivity force as on important factor in soil erosion and sediment yield has been introduced in different indexes. The objective of this study was to determine suitable rainfall erosivity indices for two climates of semi-arid in Maravetape and very humid in Sangdeh, both in Khazar watershed, by correlation between rainfall erosivity indices and sediment outflow from erosion plots. For this purpose, the rainfall intensities in different time steps and the amount of rainfalls of 12 events in Maravetape and 11 events in Sangdeh have been used. Twonty five rainfall erosivity indexes were calculated based on rainfall intensity. The amount of soil loss measured after each rainfall event in 1.8×22.1 m2 erosion plots. The results of the study revealed that in very humid climate of Sangdeh and in semi-arid climate of Maravetape had high correlation of 0.803 and 0.727 (at the level of 99 percent) with sediment yield and they were applied indices in these climates of Khazar watershed. In general, the groups of 10 and 30 minutes are better than other erosivity indices in the study areas.
A. Shirzadi, K. Chapi, P. Fathi,
Volume 15, Issue 58 (3-2012)
Abstract

Estimation of flood hydrograph is of necessities in hydrological studies such as flood mitigation projects. This estimation in un-gauged watersheds is usually taken place using geomorphological characteristics of watersheds. The objective of this research is to estimate synthetic unit hydrograph using regional flood frequency analysis and geomorphological parameters of watersheds. 1-hour and 2-hour hydrographs of two watersheds, Kanisavaran and Maranj Watersheds, were generated using maximum discharge data based on regional flood frequency analysis. Estimated hydrographs were compared with observed data and the efficiency of the model was evaluated using Nash-Sutcliffe coefficient, absolute and bias errors. The results showed that multiple regression models give more acceptable results among others for the computation of synthetic unit hydrograph (higher coefficient of determination). The Nash-Sutcliffe coefficient was 0.98 for 1-hour hydrograph while it was 0.93 for the 2-hour hydrograph. The absolute error in 1-hour hydrograph and 2-hour hydrograph was 0.13 and 1.2, respectively. The bias error was close to zero for both hydrographs, indicating that the proposed model is efficient. The model may be used for estimation of synthetic unit hydrograph in similar un-gauged watersheds.
R. Mirabbasi Najafabadi, Y. Dinpazhoh , A. Fakheri-Fard,
Volume 15, Issue 58 (3-2012)
Abstract

Accurate estimation of runoff for a watershed is a very important issue in water resources management. In this study, the monthly runoff was estimated using the rainfall information and conditional probability distribution model based on the principle of maximum entropy. The information of monthly rainfall and runoff data of Kasilian River basin from 1960 to 2006 were used for the development of model. The model parameters were estimated using the prior information of the watershed such as mean of rainfall, runoff and their covariance. Using the developed model, monthly runoff was estimated for different values of runoff coefficient, , return period, , at different probability levels of rainfall for the basin under study. Results showed that the developed model estimates runoff for all return periods satisfactorily if the runoff coefficient value is taken 0.6. Also, it is observed that at a particular probability level and runoff coefficient, the estimated runoff decreases as return period increases. However, the rate of change of runoff decreases slightly as return period increases.
H. R. Moradi, M. Bakhshi Tiregani , S. H. R. Sadeghi,
Volume 16, Issue 62 (3-2013)
Abstract

Climate situation changes over a year cause changes in some soil characteristics and soil sensitivity to erosion. Investigation of these changes and how they impact on erosion can be of particular importance. This study investigated changes in Sediment Productivity and soil factors affecting these changes in Tiregan rangeland located in Daregaz city in Khorasan Razavi province. In this study, using the position of the upper and lower hillside of eastern and western aspects, the sampling with rain simulator was performed. Characteristic features of sediment yield including runoff threshold, runoff volume, sediment and turbidity were measured. Soil samples were taken from each sample rain simulation and features of the initial moisture content, bulk density, electrical conductivity, pH and organic matter were measured. Sample was collected with the same intensity and duration of the instrument with fixed locations, and was repeated in four seasons. In order to obtain the position and orientation of each of the parameters in the data obtained at different seasons, the combined analysis of variance test was used. The effect of each of these parameters and the difference between them were evaluated using the Tukey test, and the graphs in 2007 Excel software were plotted. The results showed that all the parameters of sediment yield during the year have significantly changed. The maximum amount of sediment production rates occurred in autumn and was gradually reduced. Its decreasing in both winter and spring can be attributed to vegetation in the area.
M. Khazayi, A. Shafeie, A. Molayi,
Volume 17, Issue 64 (9-2013)
Abstract

The present study aimed to compare the effect of land cover on runoff and sediment with different coverage levels in Mehrian watershed. The study was carried out in a plot with the dimensions 3 × 2 meters during one year, in three different treatments (including without coverage, grass treatment and integrated treatment having brush and grass coverage) and in three replications. At the end of each plot, runoff and sediment collection tanks were installed. Sampling was performed during a year. The monthly rainfall, and runoff and sediment after harvest were determined. Then, runoff and sediment samples were transferred to the laboratory and calculated through decantation method. Also, the amount of plant cover with the plots of 60 × 25 was determined. Statistical analysis using SPSS was performed. Results indicated that the minimum and maximum runoffs in covers without plots and shrub cover and integrated cover were equal to 38 and 162, , 15 and 74, 15 and 96 liters, respectively. The minimum and maximum sediments were equal to 8.3 and 21, 8.1 and 11, 9.1 and 13 gr.l. Statistical analysis in the Spilt plot design showed significant differences between treatments in runoff and sediment (P <0.01). Also, the results showed that the amount of runoff in a bush cover is 2.1 times more than the cover without treatment, 8.1 times more than the integrated treatment, and in the integrated treatment 1.1 times more than bush cover. In contrast, the rates of sedimentation in the above treatments were 4.2, 6.1 and 5.1, respectively.
S. A. A. Hashemi,
Volume 17, Issue 66 (2-2014)
Abstract

Check dams are considered as main measures for flood and sediment control in watersheds, and their uses have been rapidly increased from 1990 onward in Iran. This research is done in Darjazin watershed in north of semnan city. The check dams have been constructed from 15 years ago in two sub basins of the watershed for flood control in Mahdishar. More than 650 check dams were evaluated for effects on flood. The collected data in the field was fed to ArcGIS software. The effects of these structures on flood reduction were evaluated by HEC-GeoHMS extension and HEC-HMS model. Because of homogeneity of watershed management projects in the basin due to building more check-dams in different watercourses, any flood discharge is related to check dams. Evaluating the effects of check dams on flood by t-test showed significant differences between flood discharge before and after construction of check dams at 5 percent level. So, check dams have been able to reduce flood discharge by 16.7 percent on average.

Page 1 from 3    
First
Previous
1
 

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb