Search published articles


Showing 5 results for Watershed Management

Y. Nabipoor, M. Vafakhah, H. R. Moradi,
Volume 18, Issue 67 (6-2014)
Abstract

The occurrence trend of floods in recent years shows that the most of Iran regions located in attacks of destructive floods and loss of life and property of flood damages is increasing. Watershed management practices (WMPs) are one of the superior and appropriate solutions for flood hazards mitigation. The impact of WMPs can be investigated using different approaches. In this study, the direct impact of WMPs was investigated using quantitative evaluation of flood characteristics for two periods, pre and post periods of measures implementation. Therefore, daily hydrograph of investigated periods and the results of flood analyses including number of floods occurrence, flood frequency percent in the different months and seasons were determined in Hajighoshan and Tamar hydrometery stations. Also, the mean continuing, rise and subsidence time of floods and maximum peak discharge of observed floods were investigated. The research results showed that the occurrence trend of floods had relatively increased. The number of floods has increased in post periods of measures implementation in two hydrometery stations, while WMPs effect on all flood characteristics were positive, as the continuing time of floods has increased with 0.5%, rise and subsidence time of floods and maximum peak discharge of floods have decreased with 7.9%, 21.98% and 70%, respectively. Totally, if WMPs volume pre watershed area isn't low, WMPs effect on flood characteristics will be positive.
A. R. Keshtkar, H. Shariatmadari, H. R. Naseri, M. Tazeh,
Volume 21, Issue 4 (2-2018)
Abstract

Nowadays, inappropriate land use and degradation of natural resources have led to increase of flood, soil erosion etc. In such critical conditions, an integrated planning in natural resource management with the goal of control, reclamation and conservation seems to be necessary and these kinds of purposes can be reached by an integrated watershed management. Comprehensive management of watersheds is a coordinated and harmonic management of physical, biological, social and economic systems, which provides conditions that minimize the negative impact on resources while safeguarding the interests of the community. In this research, in line with the goals of resource management, the impacts and consequences of physical, economic and ecological criteria on vegetation condition changes were evaluated with focus on elimination of flood and soil erosion issues in Nahrein watershed (with the area of 18800 ha located in Tabas). The evaluation was done by considering four management activities: management of grazing, planting, seeding, and sowing. The prioritization of the scenarios was carried out using analytical hierarchy process (AHP) technique. Then, based on the suggestions and comments from relevant experts, the evaluation of available options was done by pairwise comparison matrix method. After calculations, economic criteria was selected as the most important criteria and management activity of sowing and scenario No. 16 were introduced as the most appropriate reform plan and scenario for the study area which is selected based on available criteria

A. Honarbakhsh, M. Pajoohesh, M. Zangiabadi, M. Heydari,
Volume 21, Issue 4 (2-2018)
Abstract

Nowadays, human interferences in the natural resources cause the loss of these resources and lead to destructive floods, soil erosion and other various environmental, economic and social damages. Furthermore, increasing growth of population and climate change intensify the destructions. Thus management and planning through land use optimization is essential for the proper utilization, protection and revival of these resources. The purpose of this study is to couple the fuzzy goal programming and multi objective land allocation optimization approaches to develop a model for watershed management and planning in Chelgerd watershed. The proposed model is based on optimum area determination in various land uses and also their optimum local situation. In this research, a fuzzy model has been proposed. In this model, minimizing the amount of soil erosion and maximizing the amount of profit are priorities, respectively. Moreover, production resources including water and land as well as economic and social problems are limitations of the mentioned model. Results obtained show that the proposed model is an efficient model in land use optimization and sustainable area development and can increase profit to 37% and decrease sedimentation to 2.4%, respectively.

H. Afshri, R. Ghazavi, S. Dokhani,
Volume 25, Issue 2 (9-2021)
Abstract

Due to the limitation and scarcity of water supplies, it is essential to identify and reuse alternative water sources, particularly in the arid and semi-arid regions according to environmental conditions. Reuse of runoff is an adaptive management philosophy and approach to balance efforts and provide sustainable water services and manage hazards. The present study is aimed to design a suitable model of water resource management with an emphasis on crisis management. In this study, indices and dimensions of the water resources management model were determined via the Delphi method (based on Schmidt, et al.). Delphi panel members were identified and selected in three stages using random sampling. The faculty members of water resources and watershed management university specializing and passive defense experts of water organization were selected as the Delphy panel members. Initially, panel members identified the most important effective items on water resources security, based on their inference of the model. Based on the first evaluation and after eliminating duplicates, 43 items remained. Finally, 36 items remained in the analyses, when the items with low and medium significance coefficients were eliminated. The final model of water resources management was approved by the expert opinion based on the crisis management approach. According to the results, designing rainwater collection and storage systems in different parts of the city and installing tanks for roof rainwater collection in each home were selected as the best approach in the critical condition (with an average grade of 4.94), whereas the installation of the sensors in different parts of water pipe with an average grade of 2.10 was ranked in the 33rd selection. Finally, the items identified by the Delphi panel were classified into four general indices: retrofit, safety, culture, and planning. In general, it is necessary for the officials of urban water resources, as well as crisis management, must prepare for crisis conditions as well as the correct, principled, and scientific use of available water resources to extract and store rainwater and runoff to use it in crises and disrupt the general water supply system.

R. Dabiri, H. Abghari, A. Ghorbani,
Volume 27, Issue 4 (12-2023)
Abstract

Management of watersheds and sustainable development today requires the most suitable and fastest method of obtaining and integrating information for optimal management and planning. One of the challenges of watershed management in the stage of planning and implementation of remedial and rehabilitation operations is choosing the appropriate and correct location; to have the necessary maximum efficiency and effectiveness, due to the high cost of mechanical operations and the lack of financial resources, select the right place to construct mechanical corrective dams has particular importance. Therefore, the objective of this research was to locate mechanical watershed management operations with a multi-criteria approach using AHP and ANP decision methods and compare the two methods in the geographic information system environment at the Saqezchi-Chay watershed. The research criteria and sub-criteria of 14 variables included soil (depth and texture), climate (type and precipitation amount), land use and Normalized Difference Vegetation Index (NDVI), hydrological factors and soil protection (flow accumulation, sedimentation rate, and curve number), topography (elevation and slope) and economic and social (distance from the village, from loan sources and the road). Expert judgments for weighting were collected through a questionnaire and in a field method with a statistical population of 29 experts and university professors. The results of this research showed that the ANP method had a significant correlation with the AHP method at the level of 95% and with an intensity of 0.839 and by comparing the prioritization of the two methods with Masonry Check Dams structures implemented in the Saqezchi-Chay watershed, it was determined that the ANP method prioritizes with more accuracy and resolution due to its network nature and increasing the range of changes.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb