Search published articles


Showing 3 results for Wet Area

S. H. Sadeghi , H. Ghasemieh, S. J. Sadatinegad,
Volume 19, Issue 73 (11-2015)
Abstract

Surface runoff is one of the main causes of erosion and loss of soil fertility, sedimentation in reservoirs and reduction of river water quality. Therefore, the accurate prediction of basin response to precipitation events is very important. Hydrological models are simplified views of the actual watershed systems that can help study watershed functions in response to various inputs, and understand hydrological processes better. Due to the variety of Rainfall - Runoff models, choosing a suitable model for the basin is important for water resource planning and management. Thus, the abilities and limitations of basin hydrological models are important to consider in the selection of model. In this study, the performance of IHACRES model in daily runoff simulation of Navroud basin was investigated using evaluation criteria of Nash – Sutcliffe Index (NSH) and the mean total error and the data of Khlyan and Khrjgyl stations during the Water years 2006 - 2011. 36 months from September 2006 and 36 months from September 2009 to September 2011 were selected for calibration and test of model, respectively. Finally, results showed that Nash – Sutcliffe Index and Bias in calibration stage were 0.57 and 8/53, respectively and in verification stage, they were 0.48 and 14/9, respectively. So, the used model has an acceptable accuracy in simulating the studied basin flow.


M. Barahimi, K. Shahverdi,
Volume 22, Issue 2 (9-2018)
Abstract

Determination of the required water for crop and irrigation programing is of major importance in the sustainable use of water resources. The national water document is the output of the ‘net irrigation required for crops’, which is presented for the optimum allocation of water resources for the demands. The Penman-Monteith-FAO method is used in the calculation. Updating the national water document is necessary to overcome its some limitations, and to provide more adaptation to the plains conditions of the country. The objective of this study was the recognition of the existing problems of the water national document and appropriate method development for implementing in the country plains. In this regard, the required water of different crop patterns was calculated using the Penman-Monteith-FAO method in the Ghazvin plain (as a dry plain), Ghazvin province, and Fomanat plain (as a wet plain), in Fomanat province, in the period of 1976-2005. The results were compared to the water national document. It was shown that annual potential evatranspiration varied between 1330 and 1587.1 mm in the Ghazvin plain, and between 743 and 809 mm in the Fomanat plain. The calculated evapotranspiration in the present study was about 40.6% more than water national document in the Takestan station, in Ghazvin plain, as a sample station.
 

Z. Heidari, M. Farasati, R. Ghobadian,
Volume 22, Issue 2 (9-2018)
Abstract

To design cost-effective and efficient drip irrigation systems, it is necessary to know the vertical and horizontal advance of the wetting front under the point source; also, the proper management of drip irrigation systems requires an awareness of the soil water distribution. Many factors influence wetting pattern dimensions, including discharge, land slope, irrigation time and soil texture. The purpose of this study was to investigate the applicability of the support vector machine in simulating the wetting pattern under trickle irrigation. After preparing a physical model made of Plexiglas with specific dimensions and filled with silty clay loam soils, experiments were conducted in the irrigation laboratory of Razi University, Iran, with emitters of 2, 4, 6 and 8 l/hour discharge during the irrigation intervals of 2 hours and 24 hours redistribution and 0,5,15 and 20% slope with three replications. In this study, the statistical indicators R2, RMSE, MBE and MEF were used. R2 values for the wet depth, width and area were 0.96, 0.96 and 0.92, respectively. Regarding the MBE value, the SVM model estimated the wet width and depth parameters to be 3% less than the actual value, and simulated the wet area 2.04% less than the real value. Also, according to the MEF and RMSE values, the SVM model simulated the wet area parameter with more error.  Overall, the results showed that the SVM model had a high ability to estimate the wetting pattern parameters.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb