O Hashemi Beni, M.h Salehi, H Beigi Harchegani,
Volume 13, Issue 50 (1-2010)
Abstract
Although soil organic matter (SOM) constitutes a small portion of soil bulk weight, it has a tremendous effect on physico-chemical and biological properties of soils. It is also one of the most important indicators of soil quality and its production. Soil organic matter determination is required for soil fertility management and soil pollution purposes. Wet oxidation procedure of Walkley-Black is a routine, relatively accurate and popular method for the determination of soil organic matter, but it involves the use of chromate and high cost of analysis. Therefore, loss-on-ignition (LOI) procedure as a simple and cheap method of SOM estimation which also avoids chromic acid waste has got more attention. The aims of this study were (i) to establish the relationships between LOI method and SOM as determined by Walkley-Black method for four major plains of Chaharmahal-va-Bakhtiari province and (ii) to determine the optimal temperature of the LOI. To do this, 205 soil surface samples were randomly collected from 0-25 cm depth of Shahrekord, Farsan, Kohrang and Lordegan plains to determine soil organic matter by Walkley-Black method and LOI procedure at 300, 360, 400, 500 and 550 oC for two hours. To determine the optimum temperature for ignition, 40 soil samples were selected to compare the SOM and CCE before and after ignition for each temperature. Results showed a positive, linear significant relationship existed between LOI and wet oxidation in each plain. Coefficient of determination (R2) of the equations was higher for individual plain than the overall equation. Coefficient of determination and line slope decreased and error (RMSE) increased with increasing ignition temperature. At higher contents of calcium carbonate, the rate of line slope decrease with increasing ignition temperature was more noticeable. This may be due to the destruction of carbonates at higher temperature. A temperature of around 360 oC was identified as optimum as it burned most organic carbon, destroyed less inorganic carbon, caused less clay structural water loss and used less electrical energy.