Search published articles


Showing 2 results for Wetting Pattern.

A. Mohammadi, M. H. Biglouei, M. R. Khaledian, A. R. Moridnejad, J. Rajabi,
Volume 17, Issue 66 (2-2014)
Abstract

To study the effects of irrigation durations and land slopes on wetting pattern dimensions, some experiments were performed using an emitter with constant discharge of 4 liters per hour by 2, 4, and 6 hours irrigation durations. Experiments were conducted on lands with the slopes of 0, 5, 15 an 25 percent, with silty loam soil texture in 3 replications in Fathali region, Mogan plain, Iran. Results showed that increasing the land slope caused an increment in wetting pattern dimensions and bulk, in constant irrigation durations. When slope increased, the depth of infiltrated water along the emitter had a little decrease which wasn’t significant. The upstream and downstream components of wetting pattern were symmetrical on 0 percent slope but not on steep lands. So, optimizing the water use, which is saved in the soil, depends on the land slope and the crop should be planted 10 to 25 centimeters away from the dripper. The investigation of soil moisture distribution on wetting pattern in slope lands showed that contrary to the flat lands the main part of the moisture is accumulated in lower part of the emitter, and wetting pattern in these sloping lands was larger than in flat lands.
F. Mohamadzade, M. Gheysari, E. Landi,
Volume 19, Issue 71 (6-2015)
Abstract

The objectives of this study were to investigate the effect of dripper discharge and irrigation time on the wetted width in the sandy loam soil with high percentage of gravel and to evaluate previously developed models of estimation of the wetted width in the previous researches. The treatments included three irrigation times (T) of 4, 8 and 12 h and three dripper discharge rates (q) of 2, 4 and 8 l/h, with three replications. The wetted width of each dripper was measured 24 hours after irrigation application. The maximum and minimum wetted widths were 159.8 and 63.5 cm for T12q8 and T4q2, respectively. A linear model was developed as a function of two variables of irrigation time and dripper discharge rate was developed to predict the wetted width in sandy loam soil with high percentage of gravel. The evaluation of recommended models of wetted width for the studied soil showed that only one of six models was accurate enough to estimate wetted width. It can be concluded that the presence of gravels in the soil has a complex effect on width and depth of wetted zone. Thus, it is necessary to measure the wetted width and wetted depth in the field.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb