Search published articles


Showing 2 results for Zarshuran

Msc S. Shahmoradi, Dr M. Afyuni, Dr M. Hajabbasi, Dr A. H. Khoshgoftarmanesh, Dr M. Shirvani,
Volume 21, Issue 2 (8-2017)
Abstract

During last century, waste water of gold mine has accumulated heavy metals such as lead, zinc and cadmium in Zarshuran region soil, and thus has increased epidemic disease in this region drastically. The purpose of this research was to reduce the mobility and bioavailability of zinc, lead and cadmium in rhizosphere of sunflower grown in soil around the mine by inorganic sorbents. A pot experiments was carried out with three levels of raw zeolites (1, 6, 12 wt%), three levels of raw bentonite (1, 6, 12 wt%) and control (without sorbent) in a completely randomized block design with three replications. After cultivation, soil and plant samples were taken and the concentration of lead, cadmium and zinc in their samples were measured. Different levels of bentonite reduced the absorbable concentration of lead and zinc; and also reduced their absorbable concentrations in plant tissue, but had no significant effect on reducing absorbable concentration of cadmium.  Transfer factor for all three metals in the roots was more than shoot and reducing the concentration of heavy metals in the plant had no impact on plant growth. According to the study, level of 12 wt% of the raw bentonite was the most suitable sorbent for the stabilization of lead and zinc; and level of 12 wt% for raw zeolite was the best sorbent for stabilization of cadmium.

S. P. Mousavi, M. A. Asghar Mokhtari, Y. Khosravi, A. Rafiee, R. Hoseinzade,
Volume 22, Issue 2 (9-2018)
Abstract

In this study, the distribution of heavy metals pollution including arsenic, antimony, nickel, copper, cadmium, cobalt, bismuth, lead and zinc in the stream sediments of Zarshuran- Aghdarreh area was investigated by using statistical techniques and the geometric integration of each sample basin. For this purpose, the degree of pollution in 154 stream sediment samples was analyzed and the distribution maps for enrichment factors were prepared by using a combination technique, pixel estimation, and statistical and geostatistical methods. The results of calculating the enrichment factors indicated that the higher enrichment was related to arsenic, antimony, bismuth, cadmium and lead. Furthermore, the concentration of zinc, copper, lead, arsenic, antimony, cadmium and bismuth in the stream sediment samples was higher than the global average. Application of the principal component analysis on the data led to the recognition of 9 main components for the dataset; the first 5 were components with eigen values greater than 1 and a cumulative percentage more than 85%. Arsenic, antimony, cadmium, lead and zinc in the first component, cobalt in the second component, bismuth in the third component, copper in the fourth component and nickel in the fifth component had the highest values.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb