Search published articles


Showing 2 results for Zea Mays L.

H. Ghadiri, M. Majidian,
Volume 7, Issue 2 (7-2003)
Abstract

In order to investigate the effects of different nitrogen fertilizer levels and water stress during milky and dough stages on grain yield, yield components and water use efficiency of corn hybrid SC 704 (late maturing, non prolific and dent type), a field study was conducted. The factorial design of the study comprised of a randomized complete block with four replications. Four levels of nitrogen fertilizer (0, 92, 184 and 276 kg/ha nitrogen) along with three levels of irrigation (water stress imposed at milky stage, dough stage and a season-long optimum irrigation) were used as treatments. Results showed that water stress during milky and dough stages significantly decreased grain yield and thousand kernel weight. Also, effect of nitrogen fertilizer on grain yield, kernel number per ear, kernel weight per ear and thousand kernel weight was significant. Maximum grain yield was produced with 276 kg/ha nitrogen, although no significant differences were found among 92, 184 and 276 kg/ha nitrogen levels. Regarding water use efficiency during water stress, maximum efficiency was observed at milky stage but, as water stress declined with optimum irrigation, water use efficiency decreased.
A.h Khoshgoftarmanesh , A Sanaei Ostovar ,
Volume 13, Issue 50 (1-2010)
Abstract

The objective of this study was to evaluate the possibility of using treated industrial by-products as a zinc (Zn) source and compare their Zn availability and efficiency to ZnSO4. A greenhouse factorial experiment in a completely randomized block design was conducted with corn (Zea mays L.) in triplicates. Treatments included three Zn sources (ZnSO4, IUT-UT in size of < 1 mm and IUT-UT in size of 2-3 mm) at three rates (0, 20 and 40 kg ha-1). The results showed that Zn application both in the form of ZnSO4 and treated industrial by-products significantly (P < 0.05) increased the growth and shoot dry matter yield of corn. Shoot dry matter weight of corn in pots that had received IUTUT was higher compared to those that had received ZnSO4. The highest shoot dry matter weight was produced at the IUT-UT treatment in size of < 1 mm. Increased fertilizer rate significantly (P < 0.05) enhanced shoot and root Zn concentration. However, this increase was higher in ZnSO4 treatment as compared to the IUT-UT treatments. Application of the IUT-UT caused a significant increase in shoot Fe concentration of corn. Shoot and root Cd concentration in all experimental treatments was less than 0.02 mg kg-1. The results showed that IUT-UT can be used as a slow-release Zn fertilizer with low impurity.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb