Search published articles


Showing 2 results for Zeolite.

S. M. J. Mirzaei, , S. H. Tabatabaei, M. Heidarpour, P. Najafi,
Volume 17, Issue 66 (2-2014)
Abstract

There chemical and organic matter content in garbage leachate that may affect soil physical and hydraulic properties. The main objective of this study was to evaluate the influences of the leachate of Isfahan Organic Fertilizer Factory (IOFF) on some soil physical and hydraulic properties in a soil chemically enriched by Zeolite. The treatments include two soil textures (clay loam and sandy loam) and three levels of zeolite (0, 5 and 10 percent). The treatments were applied on lysimeters scale. The results showed that irrigation with the leachate caused a reduction of infiltration and hydraulic conductivity in the clay loam soil. The hydraulic conductivities in clay loam soil without zeolite (B0) before and after irrigation with leachate were 1.73 and 0.36 m/day, respectively. In contrast, there were no changes in the sandy loam soil’s infiltration and hydraulic conductivity. The hydraulic conductivities in the sandy loam soil with 5 percent zeolite (A5) before and after irrigation with leachate were 3.17 m/day. Furthermore, zeolite had a decreasing effect on those processes. The results show that irrigation with leachate caused reduction of bulk density in two types of soil and all levels of zeolite.
R. Mollaei, J. Abedi Koupai, S. S. Eslamian,
Volume 20, Issue 75 (5-2016)
Abstract

Water scarcity forced farmers to use wastewater as water source, without considering its effects on environment and resultant contamination of soils and plants especially with heavy metals. The objectives of this study are to evaluate the application effects of zeolite as soil amendments on the uptake of Cd by spinach (Spinach Oleares L.) irrigated with wastewater (containing 10 ppm Cd). Different levels amounts of zeoilte (0, 1% and 5% w/w) were added to the soil and the experiment was conducted as a completely randomized design in a green house with 3 replications. The results indicated that, the addition of zeolite 1% (w/w) in soil treated with wastewater reduced cadmium concentration in plant, and consequently the percentage of extractable Cd using DTPA was decreased. However, application of zeolite 5% (w/w) increased the soil salinity, and as a result increased Cd concentration in the plant but this increase was not statistically significant, comparing with control. Spinach biomass did not differ significantly under irrigation with wastewater, but the Cd available in wastewater caused a decrease in Spinach biomass yield.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb