Search published articles


Showing 2 results for Hydrated Lime

J. Abedi Koupai, K. Norouzian, N. Abbasi,
Volume 19, Issue 73 (11-2015)
Abstract

To improve the engineering properties of fine-grained soils, the use of various additives has always been considered important. In this study, the effect of hydrated lime on compressive strength of clay soils was studied in both optimum moisture and saturated modes. For this purpose, by adding varying amounts of hydrated lime (0, 1, 3and 5%) to the clay, several samples were prepared and tested by the standard proctor and Harvard miniature compaction apparatus. Then the samples were tested for unconfined compressive strength in optimum moisture and saturated modes after different curing days (7, 14, 28 and 90 days). The results showed that by increasing the amount of hydrated lime, the maximum dry unit weight was reduced and the optimum moisture was increased. Increasing the hydrated lime also increased the compressive strength of the soil in both dry and saturated modes and this resistance increase was significantly influenced by cured days and the amounts of hydrated lime. The results showed that the rate of 5% hydrated lime was the maximum compressive strength, but with regard to softening factor, the amount of 3% hydrated lime was determined as the optimum value.


G. H. Zoraghi, K. Shabani Goraji, M. R. Noura, A. R. Rashki,
Volume 23, Issue 2 (9-2019)
Abstract

Creating a mulch layer on the sand dunes surface has long been applied to reduce their mobility. However, application of oil mulch in some countries, in addition to high costs, has many environmental problems. In this research, the hydrated lime slurry was used as a protective cover on the sand dunes. The slurry was prepared in three treatments with 3, 5 and 7% lime and sprayed uniformly on 2×5 m plots on the sand dunes surface. The average thickness of different types of mulch was measured by a caliper and then their abrasions were calculated in two-month intervals for three calcareous and controlling treatments at three locations. Statistical analysis was performed by using SPSS and the Excel software. The results showed that the 3% lime slurry layer had no resistance to wind abrasion and was comparable to the controlling sites. The results obtained for the 5 and 7% lime slurry mulch layers indicated that the increase in lime percentage raised the mulch resistance against the wind abrasion. The 7% lime slurry layer with a 6.3 mm thickness showed the highest abrasion resistance in the natural conditions.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb