Search published articles


Showing 2 results for Localized Irrigation

F. Mohamadzade, M. Gheysari, E. Landi,
Volume 19, Issue 71 (6-2015)
Abstract

The objectives of this study were to investigate the effect of dripper discharge and irrigation time on the wetted width in the sandy loam soil with high percentage of gravel and to evaluate previously developed models of estimation of the wetted width in the previous researches. The treatments included three irrigation times (T) of 4, 8 and 12 h and three dripper discharge rates (q) of 2, 4 and 8 l/h, with three replications. The wetted width of each dripper was measured 24 hours after irrigation application. The maximum and minimum wetted widths were 159.8 and 63.5 cm for T12q8 and T4q2, respectively. A linear model was developed as a function of two variables of irrigation time and dripper discharge rate was developed to predict the wetted width in sandy loam soil with high percentage of gravel. The evaluation of recommended models of wetted width for the studied soil showed that only one of six models was accurate enough to estimate wetted width. It can be concluded that the presence of gravels in the soil has a complex effect on width and depth of wetted zone. Thus, it is necessary to measure the wetted width and wetted depth in the field.


M. Arabfard, A. Shahnazari, M. Ziatabar,
Volume 23, Issue 4 (2-2020)
Abstract

Localized irrigation methods can be used to manage low water holding capacity in the sandy soils. In this research, the effects of different irrigation systems including pot, tape and drip irrigation with gravity pressures of 0.5, 1.5 and 3 meters on the sandy soil moisture distribution under watermelon cultivation were compared with the furrow irrigation as the control treatment. The moisture content of the soil at different depths and at the distance of 5 and 20 cm from the plant was measured using the TDR device. Water distribution study showed that in the pot irrigation method, the moisture content of different depths of soil was kept constant by 16% during the irrigation interval, but the highest moisture content was observed in gravitional drip irrigation treatment at the depths of 40, 50 and 60 cm; in contrast, the lowest amount of moisture was observed in the pot irrigation treatment. In tape and gravitional drip irrigation system with gravity pressure, in addition to the adjustment soil moisture up to 15 to 22% within the wetting front, soil moisture can be kept almost constant by pulsed irrigation technique. Therefore, while providing the use of drip irrigation system with minimum water pressure available in most of the agricultural land (0.5 m), using pot irrigation can ensure sandy soil moisture retention and soil for the cultivation of fruits such as watermelon plants.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb