Showing 225 results for Model
Sayed-Farhad Mousavi, Ahmad Mohammad-Zadeh, Ahmad Jalalian, Hossein Samadi-Boroujeni,
Volume 1, Issue 2 (10-1997)
Abstract
One of the most vital problems in the storage and utilization of surface waters for drinking, flood control, hydropower, and agricultural purposes is that of sedimentation in reservoirs and subsequent decline of dam lifetime. The useful lifetime of a dam is defined as the time necessary for approximately 80% of the volume of its initial capacity to be filled by sediments washed in by water. It is a function of the volume of the incoming sediments, specific weight of sediments, and reservoir trap efficiency. Trap efficiency depends on sediment characteristics, life, shape, and rule curves of the reservoir as well as on the capacity-inflow ratio. It is the purpose of the present study to calculate sediment trap efficiency of small dams and also to determine the relationship(s) among the effective parameters in the Chaharmahal and Bakhtiary region. For our purposes, 14 small earth dams (with heights of less than 15 m and capacities of about 1 MCM) were selected around Shahrekord and Borougen. Since no data were available on the erosion and sedimentation for these dams, the MPSIAC empirical model was used to estimate the incoming sediment to the dams' reservoirs. The model considers nine factors effective on erosion and sediment production in each watershed. These factors were analyzed for the watershed of each dam under study and the annual sediment yield was calculated. The amount of sediments retained in the reservoirs as a result of the working life of the dams was estimated by reservoir surveying. The trap efficiency was calculated for all the reservoirs under study. The results obtained revealed that the trap efficiencies for these small dams ranged from 10.4 to 68.9%. New curves were developed and suggested for the trap efficiency of small dams based on these results.
Davar Khalili, Abolghassem Yousefi,
Volume 2, Issue 3 (10-1998)
Abstract
Physiographic characteristics of Atrak Watershed described by a number of parameters were used in regression models to estimate maximum daily discharges. These parameters were sub-watershed area, main waterway length, mean waterway slope, mean watershed elevation and mean watershed slope. Based on the results of correlation between the above parameters and their suitability for discharge estimation, three regression models were developed for further analysis. Model 1 applied area as the independent variable to estimate maximum daily discharge. In model 2 area and mean watershed elevation were the independent variables. Model 3 used area and mean waterway slope as the independent variables. Even though the results of testing did identified all three models as appropriate for application, further testing selected model 1 as the most appropriate. Recommendations were made for model application to similar watersheds lacking the necessary data.
Mansour Zibaei, Gholam Reza Soltani, Ahmad Ali Keykha,
Volume 2, Issue 4 (1-1999)
Abstract
The production and acreage of corn in Iran and in Fars Province, in particular, are expanding at an increasing rate. The impacts of this event was studied by a risk programming model (MOTAD). The results indicated that the optimal cropping patterns with corn had less variance than the optimal patterns without corn in all income levels. The results also showed that with the introduction of corn into cropping pattern, the use of land and water were increased, but the rate of increase in the use of land was more than the rate of increase in the use of water. By determining risk - aversion coefficient for the sample farmers, their sensitivity to corn price changes were studied. The results indicated that the relationship between corn and wheat is complementary but it is competing with barley, sugarbeet, cotton, cucurbits and legumes.
Jahangard Mohammadi,
Volume 3, Issue 1 (4-1999)
Abstract
The analysis of the EC data set indicated that the spatial distribution of EC data of different depths are closely related to one another. It means that they are spatially cross correlated on one another and can be considered to be co-regionalized. It also implies that EC values at a particular depth contain useful information about the other depths which can be used to improve their estimation. In this research, we aimed to investigate the effects of using relevant ancillary information in the estimation procedure. To do this, cokriging was used. To evaluate this algorithm as a potential tool for mapping EC, its performance on the independent test data was evaluated and compared with the results obtained from studies using kriging. The results of the co-regionalization of EC at different depths indicated that cokriging the salinity data, although more rigorous from theoretical point of view, displayed no advantage over independent ordinary kriging at each depth. The results confirmed that cokriging improves little over ordinary kriging if the primary and auxiliary variables are almost equally sampled and all the variograms are identical. Also, ordinary kriging showed to be quite self-consistent since the predicted average salinity profile over the three depths was almost identical to the one predicted by cokriging. Considering the complexity of the cokriging and the LMC modeling, it is clear that there is no gain in using co-regionalization.
A. Abdeshahi, G. Soltani,
Volume 4, Issue 1 (4-2000)
Abstract
Successful implementation of socio-economic projects depends on the degree of planners’ awareness of farmers’ risk coefficient. Because agriculture is a risky activity, knowledge about the farmers’ attitudes toward risk in each area is essential. This research investigated the farmers’ risk behavior in Homayjan district in Sepidan township. Cross-section and time series data were collected from a random sample of farmers and from Agricultural Department of Fars Province, respectively. In this study, the Safety First Rule (SFR), Generalized Stochastic Production Function (GSPF) and Target Motad models were used.
The results indicated that in this area, farmers are risk averse in crop production, but they have a low risk coefficient in the use of modern inputs. Signs of GSPF revealed that the use of modern resource input reduces risk. Target Motad risk programming model confirmed that farmers are risk averse because with increasing risk, crops like wheat that have relatively stable prices and yield enter the model, while crops like onion that have high instability in price and yield are omitted from the model.
K. Mohammadi,
Volume 5, Issue 1 (4-2001)
Abstract
In this paper, a numerical solution is presented for one-dimensional unsaturated flows in the subsurface. Water flow in the subsurface, however, is highly nonlinear and in most cases, exact analytical solutions are impossible. The method of reference-operators has been used to formulate a discrete model of the continuum physical system. Many of the standard finite difference methods and also the finite volume method are special cases of the method of reference-operators. Unlike elementary finite difference methods, the method of reference-operators may by used to construct finite difference schemes on grids of arbitrary structure. A one-dimensional model was developed to predict the soil-water suction (negative pressure head) and water content in a vertical column of a layered soil. The model was verified against some available analytical solutions and experimental results and, in all cases, it showed good agreement.
M.a. Izadbakhsh, S.s. Eslamian, S.f. Mosavi,
Volume 5, Issue 2 (7-2001)
Abstract
Flood is one of the catastrophic events that has attracted the hydrologists’ attention. In this research one of the important flood indices, i.e. maximum-daily mean-discharge, was determined for several western Iran watersheds, namely, in the catchments of Gamasiab, Qarasou, Saimare, Kashkan, Sezar and Abshineh. Daily data were prepared from stream-gauging stations and a 30-year concurrent period was selected.
Flood frequency analysis was performed using HYFA and TR computer programs and optimum distributions were chosen by goodness of fit tests. Extreme flow values having different return periods of 2, 5, 10, 25, 50, 100, 500 and 1000 years were calculated. Modeling was done with regional analysis using multiple regression technique between maximum-daily mean-discharge and physiographic characteristics of the basins. The most important parameter for the selection of the model was the adjusted coefficient of determination while significant level, standard error and observed discharger vs. computed discharge plot acted as controlling parameters. Finally, different models with different parameters were selected from power, exponential, linear and logarithmic forms. The results showed the power model to be the best among the four types. The main channel length, drainage density and time of concentration were the most effective parameters on flow. After analyzing the errors, it appeared that increasing the return period would cause an increase in the model error. At 1000-year return period, the error reached 32.2%.
M.r. Khajehpour, F. Seyedi,
Volume 5, Issue 2 (7-2001)
Abstract
Sensitivity of developmental stages of three sunflower cultivars to day length and temperature changes under field conditions were evaluated, and their development rates during various growth stages were modeled in a field experiment conducted in 1996 at the Agricultural Research Station, Isfahan University of Technology. Five dates of planting (April 27, May 12 and 27, and June 12 and 29) and three open pollinated sunflower cultivars (Record, Vnimik 8931 and Armavirec) were evaluated using a randomized complete block design with split-plot layout in three replications. Date of planting was considered to be the main plot and cultivars were randomized in sub-plots.
Number of days from planting (P) to head visible (HV) and P to first anther (FA) were significantly reduced with delay in planting as the result of increase in temperature during these periods. Number of days from P to physiological maturity (PM) was also significantly reduced with delay in P. This response, however, could not be explained by changes in temperature variables or day length. Number of days from HV to FA, in harmony with the partial stability of maximum and minimum temperatures during this period, was not affected by date of planting. Duration from FA to PM of the last planting date was significantly shorter than the other planting dates. This response was related to the persistence of the effect of high and stable maximum temperatures prevailing during HV to FA period of the last planting date. Armavirec was significantly earlier than Record and Vnimic 8931 for number of days from P to HV and from P to FA Cultivars showed significantly large differences for the FA to PM and P to PM durations. Armavirec was the earliest and Record was the latest cultivar. Based on the results obtained, it may be concluded that the cultivars under study were non-sensitive to photoperiod. Development rate (DR) of Armavirec responded linearly and DR of Record and Vnimic 8931 responded non-linearly to increases in temperature variables during P to HV and P to FA Development of Vnimic 8931 was faster than Record at high temperatures. DR of the cultivars decreased linearly during P to PM as day length increased. The relationship between DR and photoperiod could be used as a practical model for estimating P to PM duration of these sunflower cultivars.
S. Amin, A. M. Ghafuri Roozbahani,
Volume 6, Issue 3 (10-2002)
Abstract
Prediction of watershed responses and simulation of runoff rate and volume are required for design purposes in most water resources projects. For this purpose, different hydrologic methods and events based on continuous hydrologic mathematical models are applied. In this research, a continuous hydrologic model, Stanford Watershed Model-IV (SWM-IV) is used for simulation of annual and monthly volumes and mean daily runoff flow produced in Roodzard representative basin with an area of 896 km2 located in southwest of Iran. The accuracy of the simulation outputs were checked using the sensitivity analysis over reasonable ranges of input sata related to Roodzard watershed. Calibration and verification of the Stanford model were performed using the data of 1976-1977 and those of the four consecutive years (1978- 1981). The output of the SWM-IV model showed that the values of annual and monthly runoff, groundwater, and monthly interflow can be simulated in close agreement and acceptable precision corresponding to the observed data. The model is also capable of combining the hydrologic components of the basin to determine the dominant flow of the study watershed. Actual evapotranspiration and annual runoff coefficients, are two other parameters that have been estimated successfully by the model. However, the coefficient of determination (R2) for the observed and predicted daily flow values ranged from 0.44 to 0.81 for the available data. Therefore, application of the model is recommended for predicting the hydrologic responses of various sizes of watershed in Iran.
M. Shabanpour-Shahrestani, M. Afyuni, S. F. Mousavi,
Volume 6, Issue 4 (1-2003)
Abstract
The objective of this research was to evaluate bromide leaching in a field under corn, wheat and alfalfa. Potassium bromide (300 kg/ha) was uniformly applied and 15 mm of water was sprinkled over the plots in the first and second years. Plots were leached 8 times during the first year and 9 times in the second year (each time with 100 mm of water). Soil samples were collected at 0-30, 30-60, 60-90 and 90-120 cm depths two days after each leaching practice. Bromide concentration in soil samples was measured using an ion selective electrode. Moisture content in each plot was measured using a neutron meter to a depth of 120 cm and after calculation of evaporation from soil surface, the net water applied was determined. CXTFIT software and Regional Stochastic Model (RSM) were used to simulate leaching under field conditions.
The results showed that flow velocity and dispersivity of treatmens were not significantly different from the control in the first year, indicating that treatments had no effect on preferential flow. Control treatments were not significantly different in the first and second years. In the second year, flow velocity in wheat, corn and alfalfa treatments were 1.54, 1.86 and 2.21 times higher than flow velocity in the control, respectively. Dispersivity in alfalfa and corn treatments were 4.30 and 5.30 times higher as compared to the control. The increase in flow velocity and dispersivity is caused by an increase of preferential flow in the second year. The root channels remaining in soil at the end of the first year may also have increased preferential flow. After adding 25 cm of water, 30% of bromide leached from the top 50 cm soil in all plots in the first year and control plots in the second year but the values in the second year were 47, 67 and 70% of bromide leaching from the top 50 cm soil in wheat, corn and alfalfa plots, respectively.
M. Noshadi, S. Amin, N. Maleki,
Volume 7, Issue 1 (4-2003)
Abstract
Increasing application of herbicides such as atrazine raises concerns about soil and groundwater pollution. This study investigated spatial and temporal variation of atrazine concentration and its transportation in the Daneshkadeh soil series (Fine, mixed, mesic, Calcixerollic Xerochrepts) at the experimental field of Agricultural College, Shiraz University. The risk of soil and water contamination due to applying atrazine was also assessed. The PRZM-2 model was evaluated for the simulation of the atrazine concentration. The experiment had 3 plots, 209 m2 each (19 by 11 m). Atrazine was applied on corn at a rate of 3.5 kg a.i./ha per plot. During the growing season, soil samples were collected from each plot 7 times through 1 m soil depth with 0.10-m increments. The observed data showed temporal reduction of atrazine concentrations in the soil profile. The maximum depth of atrazine traced was about 50 cm below the soil surface. Statistical parameters ME, RMSE, EF, and CRM were obtained to compare PRZM-2 predicted and observed soil residue concentrations. For all data, the mentioned parameters were calculated and found to be 2.78 mg/kg-soil, 12.73 mg/kg-soil, 0.49, and 0.25, respectively. The simulation results were in close agreement with the observed data. Therefore, PRZM-2 could be used for simulation of atrazine transport and groundwater pollution.
N. Dadashi, M. R. Khajehpour,
Volume 7, Issue 4 (1-2004)
Abstract
A field experiment was conducted in 2000 at the Agricultural Research Station, Isfahan University of Technology, to model the response of four safflower genotypes to day length and temperature changes under field conditions. Five planting dates (March 12, April 12, May 10, June 8, and July 12) and four safflower genotypes (Arak 2811, local variety Koseh, Nebraska 10 and Varamin 295) were evaluated using a randomized complete block design with split-plot layout in three replications. Date of planting was considered as the main plot and cultivars were randomized in the sub-plots. Number of days from planting (P) to emergence (E), stem elongation (SE) to head visible (HV), and HV to flowering initiation (FI) significantly reduced with delay in planting as the result of increase in temperature during these periods. Number of days from P to SE, duration of flowering (DF) and termination of flowering (TF) to physiological maturity (PM) were significantly affected by planting date and reduced as day length increased. The same was observed in the case of number of days from P to 50% flowering (MF) and to PM. Large co-variation of day length with temperature may explain a portion of day length contribution to the variation in the above periods. Varamin 295 was later than other genotypes with respect to the duration from P to HV, and specially, for rosette duration. In addition and for unknown reasons, the rate of development (RD) of Varamin 295 at all developmental periods could not be explained by day length and/or temperature variables. Among other genotypes, Koseh with 125 days, and Nebrska 10 with 118 days from P to PM were the latest and the earliest genotypes, respectively. The response of Koseh to planting dates, as measured by the duration of various developmental stages, differed from Arak 2811 and Nebraska 10. This was attributed to the probable response of Koseh to day length. RD of Koseh, Arak 2811, and Nebraska 10 during P to MF was explained by a linear regression and RD of Koseh during P to PM by a polynomial regression with day length by mean temperature as an independent variable. RD of Arak 2811 and Nebraska 10 during P to PM was explained by minimum temperature. It seems that partial sensitivity of Koseh to day length has a considerable significance in its adaptation to environmental conditions prevailing in the summer under Isfahan climatic conditions.
M. M. Ghasemi, A. R. Sepaskhah,
Volume 8, Issue 1 (4-2004)
Abstract
The vast pastures and agricultural development plans for dry farming and irrigated farming in Khuzestan Province depend on rain. This requires availability of annual precipitation prediction models to be used in the management decision-making process. In this research, the long-term daily precipitation data from 15 rain gauge stations in the study area were collected for study and a relationship between the early fall season precipitations of 42.5 mm (t42.5) and the annual precipitation was obtained. The results showed that the relationship was an inverse one such that the later the fall precipitation occurred, the greater the annual precipitation would be. To increase the coefficient of determination in the models, climatic variables such as Persian Gulf sea surface temperature and geographical characteristics (longitude, latitude, altitude, and long term mean annual precipitation) were used. Except for the long term mean annual precipitation and altitude, other variables did not increase the coefficient of determination. The final simple model found is as follows: Pa=184.787-1.891t42.5+0.855Pm , R2=0.704 where, Pa is the annual precipitation, t42.5 is the time from beginning of fall season for 42.5 mm of precipitation, and Pm is the long term mean annual precipitation.
M. Sargolzaei, M. A. Edriss,
Volume 8, Issue 1 (4-2004)
Abstract
In this study, 14322 growth trait records of 2387 sheep bred and reared in the Rearing and Breeding Station of Bakhtiari Sheep during 1989-1997 were used to estimate the phenotypic, genetic, and environmental trends for some of the growth traits using Animal Model for lambs, rams, and ewes. The genetic trend of birth weight, weaning weight, six month's weight, daily gain from birth to weaning, daily gain from weaning to six month and daily gain from birth to six month were 12.2 (+2.9), 19.6 (+5.5), 28.7 (+8.7), .15(+0.04), 0.06 (+0.05) and 0.014 (+0.04) gr. for ewes as an indicator of genetic level of the herd respectively. Also, average of the genetic change rate per year for rams and lambs were calculated. Overall, the maximum progress rate was for six-month body weight (28.7 gr. per year) and the next was weaning weight (19.6 gr. per year). The results for lambs and rams also showed that these traits had the same rank for the genetic progress. The progress could be due to direct selection for these traits in the selection index criterion although there were negative phenotypic and environmental trends during the study years. Negative phenotypic and environmental trends could be due to bad environmental conditions, especially to nutrition of the sheep in an unsuitable (drought) climate during the study years. .
H. Rezaie, M.r. Neishabouri, A. R. Sepaskhah,
Volume 8, Issue 3 (10-2004)
Abstract
Hydraulic coefficients of a porous media such as hydraulic conductivity K(θ) and diffusivity D(θ) have a controlling role in the evaluation of groundwater flow and pollutant transport behavior. Therefore, successful porous media flow evaluation depends on the accurate determination of its hydraulic coefficients. But it is hard and time consuming to measure. Values for these coefficients accurately as measurements usually task place at a moisture range close to saturation. This situation justifies the preference for prediction models to be used. One method for evaluation of K(θ) and D(θ) coefficients is to use models which take measured soil moisture characteristic curve data into consideration. For the purposes of the present study, pressure plates apparatus measured the required data to develop soil moisture characteristic curve for nine various soil textures. The volume of instantaneous outgoing water was measured with respect to time and the total volume of water released at the end of each experiment was measured for a given pressure (0.1 to 1.5 Mpa) imposed on undisturbed soil samples. A simple equation based on Richard’s equation is provided for the estimation of K(θ) and D(θ). Application of Mualem, van Genuchten et. al, Burdine, Green and Corey, and Gardner models for estimation of the K(θ) and D(θ) values at a variety of nine varied soil textures under experiment showed a wide range of variation. Therefore, it is hard to simulate the accurate hydraulic conductivity behavior for the given varied soil textures by means of the models available. However, if the minimum and maximum simulated values obtained from the models at respective soil moisture contents are considered to be a permitted range, one may state that the results of the estimated hydraulic coefficients by the proposed method in this study lie within the permitted range or agree with the results of other models considered. Therefore, the proposed method for determination of K(θ) and D(θ) is capable of selecting the best simulation model to estimate hydraulic coefficient values.
S. R. Hasan Beygi Bidgoli, B. Ghobadian, P. Nassiri, N. Kamalian,
Volume 8, Issue 4 (1-2005)
Abstract
In addition to farm operations, power tillers in Iran are also engaged in load and passenger transportation. Inspite of their noise and adverse effects on power tiller drivers and bystanders, they have not been adequatly investigated. The initial survey in the present investigation on a 13-hp power tiller at 2200 rpm engine speed revealed that its noise was 92 dB(A), compared to the standard limit of 85 dB(A) which is disappointing. The test site was prepared according to international standards and the noise signals emitted from the system were measured and analyzed in time and frequency domains for audio frequency range (20 – 20000 Hz).
The results showed that the noise intensity was higher by 7.74 to 10.75 dB(A) for the microphone position at driver’s ear compared to the bystanders position and that the engine speed played a great role in noise generation for power tiller. This is because the noise increases up to 8.5 dB(A) with engine speed variations. Finally, the power tiller prediction models of sound pressure levels at driver’s ear and bystanders were determined using the experimental data.
M. R. Bahreini Behzadi, F. Eftekhari Shahroudi, L. D. van Vleck,
Volume 9, Issue 1 (4-2005)
Abstract
Data from the birth weight (BW), the average daily gain from birth to weaning (ADG) and the weaning weight (WW) of 1182, 1099 and 1099 lambs were respectively collected and applied to estimate the maternal effects on heritabilities as well as on the determination of the environmental factors. The data were collected from Shahrbabak Sheep Breeding Research Station within five year, from 1993 to 1998. The effects of the year of birth, the age of the dam and its sex on all the traits were significant. The type of birth had no effect on BW but it was significant for the other two traits. Estimates of (co)variance components and genetic parameters were obtained by restricted maximum likelihood, using single and two-trait animal models. Based on the most appropriate fitted model, direct heritability of BW, ADG and WW were estimated at 0.10± 0.06, 0.21 ±0.08 and 0.22± 0.09, respectively. The maternal heritability for the three traits was also estimated at 0.27± 0.04, 0.15 ±0.05 and 0.19 ±0.05, respectively. Direct genetic and phenotypic correlations between BW and ADG BW and WW ADG and WW were estimated at 0.85 and 0.41 0.82 and 0.48 and 0.99 and 0.99, respectively. Ignoring maternal effects in animal model caused overestimation of direct heritability. Thus maternal effects are significant sources of variation for early growth traits and their ignorance in the animal model causes inaccurate genetic evaluation of the lambs.
K. Asghari, J. Sourinejhad, A. K. Zolanvar,
Volume 9, Issue 3 (10-2005)
Abstract
In this study, the simulation of the BORKHAR plain aquifer located in north-east of Isfahan was done for the estimation of the hydrodynamic coefficients and for the preparation of the prediction and management model with the purpose of the study of the water table surface situation in the next years. The study of the geological situation of the plain and the report of the drilling of its exiting wells indicated that the BORKHAR plain has two kinds of aquifer: confined and unconfined. According to the field data related to the unconfined aquifer, a part of this aquifer was selected for the mathematical simulation. The calibration model for the estimation of the K and Sy. coefficients was done by dividing the plain into four geohydrologic units and by using the PEST, a module of the MODFLOW model. The situation of the water table level during 1380-1390 was studied according to the different management options by the calibration model. If the trend of the exploitation doesn’t change during the next ten years, we will confront with a maximum drop of 48 meters. As a practical way for preventing from this drop, it was suggested that the exploitation management reduce the 30 percent of the demand. One of the most important result of this will be the 26 percent reduction of the drop. By developing an optimization model and by imposing the necessary constraints on the critical regions, and transferring water from other parts, it seems that the trend of the drop will be controllable at a admissible level (less than 10 meters until 1390). Using the optimization model will make a change in the increasing trend of the drop and an improvement in the situation of the aquifer.
A. R. Massah Bavani, S. Morid,
Volume 9, Issue 4 (1-2006)
Abstract
In this study the impact of climate change on temperature, rainfall and river flows of the Zayandeh Rud basin under two climate change scenarios for two periods (2010-2039 and 2070-2099) are investigated. For the evaluation of future climate change impact on stream flow to Chadegan reservoir, the global circulation model (GCM) outputs of the HadCM3 model (monthly temperature and precipitation) with two scenarios, A2 and B2, are obtained and downscaled to the local level for the selected time periods. The results indicate that the annual average of precipitation decreases and temperature increases for both periods that are more pronounced for the period 2079-2099. Such that 10% to 16% decrease in precipitation and 3.2 to 4.6ºC increases in temperature can be anticipated for scenarios A2 and B2, respectively. To predict future stream flow changes due to climate change, artificial neural networks (ANNs) have been applied and trained by the several input models and architectures for rainfall-runoff simulation. The results indicate that the maximum of 5.8% decrease in the annual flows. Comparison of the two scenarios indicates the more critical situation in scenario A2 for the basin.
E. Karami, K. Rezaei- Moghaddam, H. Ebrahimi,
Volume 10, Issue 1 (4-2006)
Abstract
Increasing the water use efficiency through promotion of sprinkler irrigation system, in order to increase production, has been the aim of the Ministry of Agricultural-Jihad in the past decade. Considerable amount of investment and efforts have been devoted to this end. Therefore, investigation of these efforts and development of models to predict the adoption behavior of farmers are of considerable importance. A survey research was conducted in four provinces (Fars, Bushehr, Kohkiloye-va-Boyerahmad, and Chaharmahal-va-Bakhteyari). A stratified random sample of 422 farmers was interviewed including 124 and 298 adopters and non-adopters, respectively. The findings indicated that the discriminant model developed based on the multiplicity model is a better predictor of farmers’ adoption behavior than diffusion and farm structure model. Application of multiplicity model in extension of sprinkler irrigation can increase the adoption rate and as result the efficiency of extension efforts.