Search published articles


Showing 17 results for Slope

S.j. Khajeddin,
Volume 4, Issue 4 (1-2001)
Abstract

Astracantha adscendens is an endemic species in Iran growing on alpine and above alpine timberline habitats on the Zagross Mountain Range. These habitats are characterized by steep slopes, heavy snowfalls and long ice formation periods. The present study was carried out in Chelgerd, Bakhtiari, and Fereidan, Isfahan. Slopes, elevation above sea-level, and magnetic north azimuth were measured. The canopy cover was also measured along four radii in upward, downward, left and right directions. Regression analysis was performed for the measured values of plant and environmental factors.

The results revealed that the upward radius had a high negative correlation with slope changes while the downward radius showed no relationship with slope variations. The two left and right radii had a high and positive relationship with each other, both reducing in length as the slope steepness increased. Shrub volume decreases with increasing slope steepness. Plant shape was classified into seven groups using Sorenson similarity index and constructing the dendrogram. Snow pressure bends the stem toward the soil surface. Snow gliding pressure scratches stem and its base buds above the bent stem. Soil and debris move downward the slope as a result of snow gliding and rainfall runoff as well as wildlife and domestic animals. Snow gliding along with other natural factors have various effects on A. adscendens plant form which can be grouped under three categories: direct mechanical effect of snow, physiological effect of snow, and indirect effect of precipitation and wildlife. The environmental factors and plant physiological responses to them change the A. adscendens plant form from a funnel or ob-conical shape to a semi-funnel or semi ob-conical form.


H. Khademi, H. Khayyer,
Volume 8, Issue 2 (7-2004)
Abstract

Understanding the variability of pedological properties as well as the soil quality attributes on different landscape positions in hummocky terrains would result in a better land management in such areas. Despite the importance of such studies, no research has been couducted on the landscape-scale variability of soil quality indices in Iran and most researchers have so far focussed on pedological aspects of soil variability. The objective of this study was to understand the variability of selected soil quality indices at different landscape positions. A systematic grid including 120 points (12x10) with a distance of 30m was laid out in a hummocky rangeland around the city of Semirom. Surface soil samples were taken from 120 points on grid nodes and their organic carbon, microbial respiration rate, phosphatase activity, pH and EC were measured. Also, the thickness of A horizon and the soil moisture content were measured on grid nodes in the field. The results indicated that the lower slope positions including footslope and toeslope had the highest amount of phosphatase activity, microbial respiration, A horizon thickness, organic carbon, and EC. In contrast, soils occuring on shoulder had the least amount of the above-mentioned properties. Soils on summit and backslope seem to have been moderately degraded. Soil pH showed the opposite trend, as compared to other properties studied. The presence of a great variability in soil quality attributes at the landscape scale can be attributed to differenes in effective moisture that various landscape positions receive, as well as the differenes in soil erosion and deposition rates. This can also be an indication of a severe land degradion due to poor management practices. Since applying different management practices on different landscape positions are practically impossible, to be on the safe side, it is highly recommended to plan conservation practices based on soil quality of the most degraded landscape positions.
N. Yaghmaeian Mahabadi, J. Givi,
Volume 11, Issue 42 (1-2008)
Abstract

  Gypsum affects many physical, chemical and mineralogical properties which in turn influences management, classification and sutability of the soils. This is the reason why accurate measurement of gypsum in soil is very important. In most of the soil science laboratories, the method of acetone ,in spite of its too much limitation, is being used as a standard method. The purpose of this research was to compare different gypsum determination methods and to find the most suitable one. The study areas include Jafarabad of Borkhar and Sepahanshahr.Soil samples were collected from different horizons of the studied profiles and seven samples with a wide range of gypsum content were selected. Gypsum content of the soil samples were determined by methods of acetone, sodium carbonate, resin, calcium and magnesium difference, diluted extracted sulfate, ammonium carbonate, sodium citrate and hydrochloric acid. To calculate the recovery percentage of the methods, after adding a certain amount of gypsum with known purity percentage to the soil samples, gypsum content was determined again by above mentioned eight methods. To evaluate the suitability of the methods, in addition to the recovery percentage of the methods, coefficient of variability and extent of proximity of the regression line to the 1:1 line were used. The results revealed that among the used methods, the method of sodium carbonate is the most accurate one. Resin method is ranked as the second best method and can be used in non-saline soils as another accurate method for determination of gypsum content. Sodium citrate and hydrochloric acid methods for different amounts of gypsum and ammonium carbonate method for gypsum content up to 30% are third in rank as far as their accuracy is concerned. Acetone, calcium magnesium difference and diluted extracted sulfate methods are not sufficiently accurate, because of low solubility of gypsum in water which is used as an extractant. In general, the most important determinant of accuracy of the methods is extractants of the gypsum among which the sodium carbonate has the highest efficiency.


A Parsakho, S.a Hosseini, M Lotfalian, H Jalilvand,
Volume 13, Issue 47 (4-2009)
Abstract

Forest roads must be constructed according to technical standards and guidelines which have been published by the scientific and operational organizations. Recently, hydraulic excavators have been used beside the bulldozer for excavating the forest roads. Thus, it is necessary that their ability in construct of standard cross sections be compared. This study was conducted in Lattalar forest which is located south of Sari city (Mazandaran Province). 60 cross section samples were randomly selected for each machine in slope classes of 30-40, 40-50, 50-60 and 60-70%. Then, cross sections were taken by niveau and clinometer. The results in different slope classes showed that the hydraulic excavator and bulldozer had no significant effect on cut and fill slopes length and gradient. Roadbed width in bulldozer construction area was more than the hydraulic excavator at probability level of 1%. Also, there was a significant difference between the hydraulic excavator and bulldozer earthworking width in slope classes of 30-40 and 40-50% at probability level of 5 and 1%, respectively, whereas this difference was not significant in other slope classes. Finally, the average standard cross sections for hydraulic excavator and bulldozer were 89.96 and 84.81%, respectively.
F. Maghami Moghim, A. Karimi, Gh. Haghnia, A. Dourandish,
Volume 17, Issue 65 (12-2013)
Abstract

The quantity and variability of soil organic carbon (SOC) is one of the most important indices to determine the effect of land use changes on the soil quality. Regarding long-term changes from rangeland to dry farming in the Roin area of North Khorasan, the objectives of this study were to investigate the effect of long-term land use changes on the SOC in different slope faces and use SOC as an index to make a proper decision about the future of land use in this area. 140 soil samples were taken from 0-15 cm soil depth of back slope position of north-, south-, west- and east-facing slopes of rangeland, dry farming, alfalfa dry farming and garden in 7 points. 14 soil samples were taken from irrigated farming, too. The results showed that garden and irrigation farming with averages of 2.03 and 0.78% have the maximum and minimum SOC content. The average of SOC content in rangeland was 1.40% that decreased by land use change to 1.04 and 1.27% in dry farming and alfalfa dry farming, respectively. SOC content in southern slope aspects showed a significant difference compared to other slope aspects. The most SOC content occurred in east aspects. It seems that after long-term land use changes, the SOC content have equilibrated to environmental and land use conditions. The average SOC content in different slope aspects except south one changed from 1.4% in rangeland to 1.11% in dry farming and 1.32% in alfalfa dry farming, which are a suitable value for semiarid regions. In conclusion, to protect land from degradation and considering this fact that dry farming is the main income of the people in the study area, it is recommended to stop dry farming on south aspects and continue on east, north and west aspects with conservation practices.
Sh. Zamani, A. Parvaresh Rizi, S. Isapour,
Volume 17, Issue 66 (2-2014)
Abstract

Modernization of irrigation canals as an operation improvement tool is essential to promote the performance of canal networks and indeed requires control systems. Proportional integral derivative (PID) algorithms have more applications than the other controllers in different places of the world, but tuning these controllers for different hydraulic conditions of canals is considered as a major problem for designing control algorithms. Since the bottom slope is one of the effective factors in the water flow dynamic behavior, in this research, the distant downstream Proportional Integral Derivative feedback control with decouplers was designed with a change in longitudinal slope in a reference canal and its performance was investigated. The canal characteristics were used to tune this controller and the system identification as a new method was applied for determining canal characteristics. SOBEK hydrodynamic model modulated with MATLAB software was used to design and run the control algorithms, and slope influence on water flow behavior, tuning controller, and coefficients of controller were investigated with different values of slope. Then, controller performance for hypothetical period of operation in various scenarios was evaluated with computation performance indices. The results showed less resonance behavior of water flow and less potential of controller in steep slope
A. Masjedi, A. Taeedi,
Volume 18, Issue 67 (6-2014)
Abstract

Floor intake is one of the best options for diverting mountain rivers' flow. Determination of discharge diverted in different conditions of flow in main channel is one of the main objectives for intake under rack floor condition. Gradient and shape of grid rod floor can affect the discharge deviated. In this experiment, placement and gradient of grid rods and also their effects on the discharge coefficient and hydraulic parameters were investigated. For this purpose, a physical model made of glass with variable gradient was used for the main channel. To conduct and measure the discharge diverted, a sub-channel 8 meters away from the entrance of main channel was installed below the main channel. Length and width of intake entrance were 10 and 50 cm, respectively. At the entrance of intake a longitudinal grid with four different rod diameters, constant-space passing, and four different gradients were used. Meanwhile, for the investigation of flow rate four discharges were used. The results showed that intake discharge coefficient was increased with an increase in diameter of grid rod floor, reduction in floor gradient, and increasing of depth in the upstream network. In all cases, increasing the Froude number resulted in an increase in the intake discharge coefficient in the upstream network
N. Pourabdollah, T. Honar, R. Fatahi,
Volume 18, Issue 67 (6-2014)
Abstract

Most of researches related to hydraulic jump have been done on horizontal and rough beds, and little attempt has been made on rough beds with adverse slopes. The aim of this study was to investigate the influence of rough beds with adverse slope on hydraulic jump characteristics. The variations of energy loss in stilling basins with three adverse slopes and three different roughnesses were studied. Results showed that increase of roughness caused that relative depth of jump in stilling basins with rough bed and adverse slope decreased as compared to horizontal smooth beds. The experiments were performed on rough beds in different conditions where Froude number ranging between 4.9 and 7.8. Result showed that reduction of relative depth was about 31.15%. Results also showed that in such cases the relative energy losses are more than that for classic conditions.
M. Karamian, V. Hosseini,
Volume 19, Issue 71 (6-2015)
Abstract

Soil is one of the most important components in forests and distinguishing soil types and soil capability are first steps in forest management. The main aim of this study was to determine relationship between slope aspect and position, and chemical properties of the soil. Soil sampling was done in Tang-e-Dalab in Ilam province which is a part of southern Zagros. Samples were collected in both northern and southern slopes of oak stand (Quercus brantii). In each slope, three transects 50m apart were sampled. Overall number of samples was 60. After data normalization, the means were compared by Duncan test. Slope aspects influenced organic carbon and total nitrogen of soil. These parameters were higher in northern slope than southern one. Slope position showed a significant effect on C, N and P. Also, concentration of C, N and P were increased by moving down the position. Most amounts of C, N and P were 5.84%, 0.58% and 108.19 mg/kg in bottom, middle and bottom of northern aspect, respectively. The least amounts of C, N and P were 3.31%, 0.24% and 37.83 mg/kg in bottom, middle of southern aspect and top of northern aspect, respectively. The results of this study confirmed that nutrient concentration in northern slope was more than southern slope and nutrient concentration in soil was increased by moving downward.


M. Noshadi, A. Babolhakami,
Volume 21, Issue 3 (11-2017)
Abstract

The uniformity parameters in drip irrigation system are influenced by the slope of manifold and therefore, the evaluation of drip irrigation systems is important in slopping lands. In this research, different slopes of 0.2, 6, 11, 16, 20 and 25% were applied on the ground surface and manifold of drip irrigation system with diameters of 50, 63 and 75 mm and length of 70 m were installed on these uniform slopes. The lateral pipes with 16 mm diameter and 40 m length were placed on the contour lines and connected to manifold bilaterally. The results showed that in the normal emitters in above slopes, the qv(avg) values were 289, 6740, 46, 135, 38 and 27 percent, respectively, qv(max) values were 222, 48, 53, 90, 27 and 9 percent, respectively, and the CV values were 300, 114, 33, 140, 63 and 25 percent, respectively, higher than compensating emitters. However, in the normal emitters in above slopes, the EU values were 33, 34, 12, 25, 17 and 9 percent, respectively, EUa values were 26, 23, 6, 21, 15 and 13%, respectively, UC values were 17, 16, 4, 13, 14 and 9%, respectively, and US values were 10, 8, 2, 8, 5 and 4 percent, respectively, less than compensating emitters. Therefore, even in high slopes (20 and 25%), the irrigation efficiency in compensating emitters were better than normal emitters. The relationship between slope and discharge of emitters represented small changes in discharge of compensating emitters in sloping lands.
 


A. R. Vaezi, Z. Bayat, M. Foroumadi,
Volume 22, Issue 2 (9-2018)
Abstract

Soil erosion by surface runoff introduced as surface erosion is one of the main mechanisms of land degradation in the hill slopes. Slope characteristics including aspect and gradient can control the differences of soil properties along the hillslope. This study was conducted to investigate the effect of slope aspect and gradient on variations of some soil properties in the short slopes. Five hills including both north and south aspects with different gradients (9-10%,
13-16%, 17-22%, 29-31% and 33-37%) were considered in a semi-arid region with 30 ha in area, in the west of Zanjan, northwest of Iran. The hills were weakly covered with pasture vegetation covers. Soil samples were collected along the slopes from two depths (0-5 cm and 5-15 cm) in four positions with 2 m distance along each slope with two replications. A total of 160 soil samples were analyzed for particle size distribution (sand, silt and clay), gravel and bulk density. Surface erosion was determined based on the variation of grain size distribution and bulk density. Differences of the grain size distribution and surface erosion between the two slope aspects and among the slope gradients were analyzed using the Tukey test. No significant difference was found between slope aspects in surface soil erosion. Nevertheless, surface soil erosion was affected by slope gradient in each slope aspect (R2= 0.78, p< 0.05). Surface erosion in the north slopes was more dependent on the slope gradient, as compared to the corresponding south slopes. In the south slopes, surface erosion was affected by the movement of silt particles from soil surface, while in the north slopes, it was significantly affected by the loss of clay particles.

Z. Eshkou, A. Dehghani, A. Ahmadi,
Volume 23, Issue 3 (12-2019)
Abstract

Stilling basins have been used as an energy dissipater downstream of hydraulic structures. Dimensions of the stilling basins depends on hydraulic jump characteristics. In this research diverging hydraulic jump with an adverse slope using baffle blocks and an end sill have been studied experimentally and effect of diverging angle of the walls, adverse bed slope and baffle blocks on the hydraulic jump characteristics have been evaluated. Tests have been done for rectangular stilling basin with different bed slopes (0.025-0.05-0.075) and different diverging angle (3-5-9) degree and using baffle blocks. Discharge and Froude numbers considered to range from 39 to 81.7 lit/s and 4.44 to 8.56 respectively. Results have been indicated that the baffle blocks have been reduced sequent depth ratio and relative length of the jump 12% and 18% respectively (in comparison to diverging stilling basin with adverse slope without block). It was also found that baffle blocks and end sill could considerably improve the general condition and features of an expanding hydraulic jump with an adverse slope and could stabilize the position of this type and bi-stable situation of the flow.

F. Soroush, F. Fathian,
Volume 25, Issue 1 (5-2021)
Abstract

In the present study, the spatial and temporal changes of climate variables such as pan evaporation (Ep), temperature (T), relative humidity (RH), sunshine duration (SD), wind speed (W) and precipitation (P), as well as their relationship with altitude, were investigated. For this purpose, 68 meteorological stations with 30 years of data (1987-2016) throughout Iran on both seasonal and annual time scales were selected. Trend analysis of climate variables showed that over the past 30 years, most areas of Iran have become warmer and drier although all trends have not been significant. Investigation of the relationship between the trend slope of climate variables and altitude illustrated that there was no significant relationship between them during the study period on the annual time scale (p>0.1). However, in winter, the rate of increase in T (minimum, maximum and mean temperatures) and SD (p<0.1), as well as the rate of decrease in P (p<0.01), was significantly enhanced by increasing the altitude. The increase in mean and maximum T (p<0.1) and SD rates (p<0.001) in summer were significantly lower in the highlands than in the lowlands. In autumn, the trend slopes of minimum and mean T (p<0.05) were negatively correlated with altitude; in addition, the rates of increase in P and RH (p<0.05) in the highlands demonstrated a sharper increase. It seems, therefore, that most changes in climate variables have occurred in both autumn and winter. The results also showed that in winter, the highest rates of increase in Ts were related to the altitude of 1500-2000 m; however, the highest decrease in P belonged to the altitude of 2000-2500 m. In autumn, the highest rates of decrease in minimum and mean Ts had occurred in the altitude of 2000-2500 m; as well, he highest rate of increase in P was observed in the altitudes of both 0-500 m and 2000-2500 m.

A. Arab, K. Esmaili,
Volume 25, Issue 1 (5-2021)
Abstract

The study of floods has always been important for researchers due to the great loss of life and property. Investigation of flood bed can provide appropriate solutions to reduce this phenomenon to managers and researchers. In this research, the compound channel (with flood plain on one side of the main channel) Been paid, Therefore, two experimental models of compound channel in laboratory flume were examined by considering dimensional analysis. With the goal Investigation of lateral slope of flood wall in laboratory model In the first model, transverse slope 0 And in the second model, a value equal to 50% Was considered. Also in order to investigate the effect of longitudinal slope of river bed sediments Longitudinal slope in three steps 0.00 2, 0.004 and 0.006 Was changed. Examining the ADV speedometer data, the results showed that with increasing the longitudinal and transverse slope (slope of the flood wall) of the channel, the maximum longitudinal velocity changes to the floor of the channel. In order to investigate the effect of average sediment diameter on the scouring process during experiments Mm was used. The results showed that increasing the longitudinal and transverse slope had a great effect on increasing the volume of washed sediments 3 and 0.9 of sandy sediments with a diameter Along the canal and with the increase of these longitudinal and transverse slopes in the channel, more sediment transport volume occurs. In the following, using Investigation of dimensionless numbers obtained from dimensional analysis, dimensionless weight landing number was introduced to evaluate this value value of other hydraulic parameters and Was introduced. A relationship based on nonlinear regression with correlation coefficient Acceptable was introduced at around 0.88.

M. Pakmanesh, H. Mousavi Jahromi, A. Khosrojerdi, H. Hassanpour Darvishi, Hossein Babazadeh,
Volume 25, Issue 3 (12-2021)
Abstract

The present study is investigated the earth dam stability during drawdown based on both numerical and experimental aspects. To validate the numerical model, a model was performed experimentally. Some soil mechanic tests were carried out through the hydraulic experiments to attain the usage factors of the numerical investigation. To investigate the effect of hydraulic conductivity on the rapid drop of water level and the use of hydraulic parameters of materials, seepage flow in the model was modeled by seep/w software. The input information to the software including hydraulic conductivity and water volume were measured by performing a constant load test and using a disc penetration meter, respectively. After validation of hydraulic conductivity with the experimental model, the results were compared with observed data. Comparison between numerical and laboratory discharge illustrated that the numerical model with laboratory model is well confirmed. In addition, saturated and unsaturated simulations demonstrated that the unsaturated model is highly consistent with the experimental model. It is assumed that due to the drawdown conditions, unsaturated models can achieve high accuracy for simulating the flow through a homogeneous earth dam.

S. Salehi, A.r Esmaili, K. Esmaili,
Volume 25, Issue 4 (3-2022)
Abstract

The objective of this study was to investigate how the earth dam is destroyed due to the effect of upstream and downstream slope of the body in overflow conditions. Therefore, eight models were provided that each model is constructed from the embankment dam with different upstream and downstream slopes (1:1, 2:1) and the soil properties (Sc) on breach formation. The time and method of dam break for flood discharges were investigated. The results showed that the upstream side slope of the embankment dam has less effect than the downstream side slope on the scour process resulting from the phenomenon and by increasing the downstream side slope of the embankment dam, the amount of erosion in the scour hole increases 28 %. Then, using nonlinear regression, relationships were presented to estimate the output flow rate and the location of the waterfall. A to the erosion and formation of the waterfall inside the body of sticky earth dams, two main outlines of the great waterfall and a series of waterfalls were presented. Finally, the formation of these waterfalls due to the effect of shear stress created during sediment erosion relative to the critical shear stress of the dam constituents was investigated and evaluated. Considering the limitations based on shear stress, the formation status of the type and the leaching pattern of the body of the cohesive earth dams during the overpass were estimated. Then, a general plan was presented to predict the behavior of the overflow stream in homogeneous and sticky soil.

M. Majedi Asl, T. Omidpour Alavian3, M. Kouhdaragh,
Volume 27, Issue 4 (12-2023)
Abstract

Weirs of the labyrinth have some advantages including the high coefficient of the irrigation of weir and the low fluctuation of water when the flow passes over the crest of the weir. In this research, the flow rate coefficient has been investigated by changing the weir geometry in terms of wall slope, arc cycle angle, and nose length change in the upstream and downstream of each cycle of the trapezoidal arc labyrinth weir. A total of 240 tests have been performed on 16 different physical models in a channel with a width of 120 cm and a narrowing of 20 cm from each wall. All models have been compared with the control model (normal labyrinth weir) (80A). The results showed that the 80B weir with an arc cycle angle of 20 degrees and without wall slope has a better performance than other weirs. Also, the weir with an arc cycle angle and a wall slope of 20 degrees in a divergent form (D20B) in the area (Ht/P) <0.31 has a better performance than other weirs with an arc cycle angle of 20 degrees, and after this area, the weir with a wall slope of 10 degrees has performed better in divergent form (D10B). In weirs with different cycles at an arc cycle angle of 20 degrees, the labyrinth weir with 5 cycles (N5) has performed better up to the point (Ht/P)=0.36. Also, at the maximum point, the difference is 13 and 17%, respectively, compared to the 4-cycle and 3-cycle weirs.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb