Search published articles


Showing 3 results for Soil Improvement

M. Mir Mohammad Sadeghi, A. R. Sotoudehfar, E. Mokhtari,
Volume 20, Issue 77 (11-2016)
Abstract

Improvement of soils is among the major concerns in civil engineering, therefore a variety of approaches have been employed for different soil types. The annual budget of implementing the projects of this kind in countries clearly implies the importance of the subject. The loose granular soils and sediments have always imposed challenges due to their low strength and bearing capacity. Bio-mediated soil improvement has recently been introduced as a novel link of biotechnology (biotech) and civil engineering for improving the problematic soils, i.e. utilizing some bacteria to precipitate calcite on the soil particles. Bio-grouting is a branch of Bio-mediated soil improvement which is a method based on microbial calcium carbonate precipitation. In this regard, the soil samples were stabilized by injecting the bacterium Sporosarcina pasteurii in the first phase of the process and Urea and Calcium Chloride in the second phase of the process (two-phase injection) as the nutrients into the sandy soil columns and subjected to unconfined compressive strength test. In this research, Taguchi method was utilized for design of experience (DOE). Based on results obtained, the activity of the bacteria caused the precipitation of calcium carbonate in soil samples so that after 21 days, the unconfined compressive strength of the soil increased from 85 kPa in the control sample to 930 kPa at optimum condition.


S. M. A. Zomorodian, A. Soleymani,
Volume 21, Issue 1 (6-2017)
Abstract

Erosion is one of the main factors of destruction of hydraulic structures. Therefore, soil improvement is necessary to improve soil quality and reduce soil erosion. Due to the adverse effects of substances such as lime and ash and also the increasing usage of nanotechnology in various branches of engineering sciences, using nanoparticles as new additives is an efficient way. In this study, to investigate the effect of nanosilica additive on soil, erosion function apparatus (EFA) is used. Samples containing nanosilica with 0, 1, 1.5, 2 and 4 percent (w/w) of dry soil were compacted in the standard compaction mold. They were tested in a close flume and with variable discharges. Erodibility parameters showed that by addition of 1.5% nanosilica to the dry soil, erodibility decreased by 92% as compared with untreated soil. The optimal amount of nanosilica was chosen as 1.5%. The results showed that samples compacted with the optimum moisture content causes the least erodibility. Scanning Electron Microscope (SEM) tests results showed that by addition of nanosilica to the dry soil, soil structure becomes more dense which reduces the risk of erosion.
 


N. Abbasi, A. Heydari Pakroo, R. Bahramloo,
Volume 24, Issue 2 (7-2020)
Abstract

The use of additives to modify the physical, chemical and mechanical properties of soil and soil stabilization is one of the most common methods that have a history. By adding one or more additives to the soil and carrying out the required measures, the engineering properties of soils could be improved due to chemical reactions. Selecting the type and amount of additive depends on several factors such as: soil type, stabilization purpose, additives inherent characteristics, etc.; these are determined based on the technical and economic aspects of the projects. In this study, the effects of the simultaneous use of three types of additives including lime, stone powder and polypropylene fibers on the unconfined compressive strength of a clayey soil were investigated.  To do this, four different levels of lime (0, 2, 3 and 5 percent by weight of soil) and four different levels of stone powder waste (0, 2, 5 and 10 percent by weight of soil) and Polypropylene fibers with different percentages in five levels of 0, 0.25, 0.5 and 1 percent by weight of soil were added into a high plastic clay soil classified as CH. Then, some physical and mechanical characteristics of different mixtures including plasticity, compaction and unconfined compressive strength were determined. The results showed that the samples were stabilized with lime and stone powder waste and reinforcement them with polypropylene fibers modified Atterberg Limits, optimum moisture and maximum dry density of the mixtures. Also, it was found that a combination of waste stone powder, lime and polypropylene fibers containing 5, 5 and 1 percent by weight of soil increased the unconfined compressive strength 8-fold, as compared to the natural soil. The curing time also had a significant impact on the compressive strength of the treated samples in which the 28-day compressive strength of was found to be about 2 times of the 7-day samples.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb