جستجو در مقالات منتشر شده


1 نتیجه برای آبگندی

ایمان صالح، سید مسعود سلیمانپور، مجید خزایی، امید رحمتی، صمد شادفر،
جلد 29، شماره 4 - ( 10-1404 )
چکیده

هدررفت خاک و تخریب فراوان ناشی از فرسایش خندقی همواره خسارات فراوانی به همراه داشته است. به دلیل اینکه اندازه گیری مستقیم میدانی و پایش فرسایش خندقی امری هزینه بر و زمان بر است، امکان تعیین میزان هدررفت خاک ناشی از فرسایش خندقی بسیار مشکل است. این پژوهش با هدف محاسبه حجم خاک ازدست‌رفته ناشی از فرسایش خندقی با استفاده از مدل های یادگیری ماشین در حوزه آبخیز آبگندی استان کهگیلویه و بویراحمد بر اساس مطالعات میدانی، انجام شده است. مدل های یادگیری ماشین عبارت‌اند از: جنگل تصادفی، ماشین بردار پشتیبان، شبکه عصبی مصنوعی و سیستم استنباط فازی عصبی تطبیقی. ازاین‌رو، موقعیت 68 خندق در منطقه ثبت و به منظور مدل سازی هدررفت خاک ناشی از خندق ها، لایه های رقومی عوامل تأثیرگذار بر گسترش خندق ها از جمله عوامل توپوگرافی، خاک شناسی، سنگ شناسی و هیدرولوژیک به عنوان متغیرهای مستقل تهیه شد. سپس حجم خاک ازدست‌رفته ناشی از فرسایش خندقی منطقه در تعدادی خندق معرف به صورت مستقیم به عنوان متغیر وابسته در عرصه اندازه گیری شد. خندق های اندازه گیری‌شده، به صورت تصادفی به دو گروه آموزش و اعتبارسنجی تقسیم شدند. نتایج مدل ها با استفاده از خطای جذر میانگین مربعات (RMSE) و شاخص R2 ارزیابی شده و مدل ها با یکدیگر مقایسه شدند. بر اساس نتایج این مطالعه، فرسایش خندقی در حوضه آبگندی استان کهگیلویه و بویراحمد هر ساله رو به افزایش است و در شرایطی که میزان بارندگی و همچنین فراوانی بارش‌های سنگین (بیشتر از مقدار پنج میلی‌متر یا بیشتر) و دارای شدت زیادی باشد، میزان فرسایش و هدررفت خاک به طور مستقیم افزایش چشمگیر خواهد داشت. از میان مدل‌های یادگیری ماشین مورد استفاده در این پژوهش، مدل جنگل تصادفی به عنوان مدل برتر در زمینه پیش‌بینی هدررفت خاک ناشی از فرسایش خندقی انتخاب شد.


صفحه 1 از 1     

کلیه حقوق این وب سایت متعلق به مجله علوم آب و خاک دانشگاه صنعتی اصفهان می‌باشد.

طراحی و برنامه نویسی: یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Journal of Water and Soil Science

Designed & Developed by: Yektaweb