3 نتیجه برای سیستم استنتاج فازی
مریم صادقیان، حجت کرمی، سیدفرهاد موسوی،
جلد 21، شماره 4 - ( 11-1396 )
چکیده
امروزه، شناخت بیشتر خشکسالی و ایجاد سیستمهای پایش آن، بخصوص در دورههای کوتاه مدت، و افزودن قابلیت پیشبینی به این سیستمها، میتواند منجر به ارائه راهکارهای مناسبتری در بخشهای مدیریت تخصیص منابع آب گردد. در این پژوهش، با استفاده از روشهای پیشبینی سریهای زمانی، سیستمهای استنتاج فازی- عصبی تطبیقی و شبکههای عصبی مصنوعی سعی شده مدلهای مناسب جهت پیشبینی خشکسالی شهرستان سمنان ارائه گردد. در این مدلسازیها از دادههای میانگین ماهانه پارامترهای هواشناسی مانند بارندگی، دما، حداکثر دما، حداقل دما، رطوبت نسبی، حداکثر رطوبت نسبی، حداقل رطوبت نسبی و شاخص خشکسالی SPI طی دوره آماری 1966 تا 2013 استفاده شده است. نتایج نشان داد که از بین انبوه مدلهای ساخته شده، مدل ANFIS با ورودیهای میانگین بارش، میانگین حداکثر دما، SPI و دادههای یک ماه قبل آنها، با 10 قانون و تابع عضویت گوسی، با مقادیر RMSE برابر 777/0، MAE برابر 593/0 و ضریب همبستگی 4/0 در مرحله آموزش و RMSE برابر 837/0، MAE برابر 644/0 و ضریب همبستگی 362/0 در مرحله آزمون، بهعنوان مدل برتر انتخاب شد. سپس، پارامترهای ورودی این مدل با استفاده از مدل ARIMA برای 12 ماه آینده پیشبینی گردید و بهعنوان ورودی به مدل مذکور معرفی شدند و SPI برای 12 ماه آینده پیشبینی شد. روشهای شبکه عصبی مصنوعی و سری زمانی با اختلاف کم در مقادیر خطا، در رتبههای بعد قرار گرفتند. پارامترهای ورودی SPI و دما عملکرد مناسبتر و پارامتر بارش عملکرد ضعیفتری را داشتند.
محمدحسن طرازکار، منصور زیبایی، غلامرضا سلطانی، مسعود نوشادی،
جلد 22، شماره 2 - ( 6-1397 )
چکیده
امروزه مدیریت منابع آب بهجای ساخت سیستمهای جدید عرضه آب، به سمت مدیریت و بهرهبرداری بهینه از سیستمهای موجود حرکت کرده است. بر این اساس، در این مطالعه قواعد بهرهبرداری از مخزن سد درودزن در استان فارس، با استفاده از روشهای مختلف تعیین شد و کاراترین روش انتخاب شد. برای این منظور، ابتدا با استفاده از دادههای ماهانه یک دوره پانزده ساله (92-1377)، مدل بهرهبرداری بهینه چند هدفه غیر خطی طراحی شد. توابع هدف مدل شامل حداقلسازی شاخص کمبود آب در بخشهای مختلف شامل بخش شهری، صنعت، محیط زیست و کشاورزی در نظر گرفته شد. همچنین بهمنظور استخراج قواعد بهرهبرداری از مخزن، علاوه بر مدل بهرهبرداری بهینه غیر خطی از روش رگرسیونی حداقل مربعات معمولی، سیستم استنتاج فازی و شبکه عصبی تطبیقپذیر مبتنی بر سیستم استنتاج فازی (ANFIS) نیز بهره گرفته شد. بهمنظور مقایسه روشهای مختلف از شاخصهای عملکرد مخزن شامل اعتمادپذیری، حداکثر آسیبپذیری، میانگین آسیبپذیری، برگشتپذیری و پایداری استفاده شد. نتایج مطالعه نشان داد که مدل ANFIS، بهدلیل داشتن مقادیر بالای شاخص اعتمادپذیری (7/0)، برگشتپذیری (42/0) و مقدار کم شاخص آسیبپذیری (13/0)، دارای بالاترین مقدار شاخص پایداری (26/0) و بهترین عملکرد است. بر این اساس، میتوان بهطور کارا از مدل ANFIS، برای ایجاد قواعد بهرهبرداری از مخزن سد درودزن استفاده کرد.
ساناز بیگدلی، کیومرث ابراهیمی، عبدالحسین هورفر، علی اکبر داودی راد،
جلد 26، شماره 4 - ( 12-1401 )
چکیده
در این تحقیق تدقیق شبکه عصبی فازی (ANFIS) در ترکیب با الگوریتم گرگ خاکستری (GWO-ANFIS) برای اولین بار در پیشبینی تراز آب زیرزمینی با کاربرد دادههای چاپ نشدۀ مشاهدهای 1397-1377 از آبخوان زرندیه ارزیابی شد. سه چاه مشاهدهای بصورت تصادفی برای تجزیه و تحلیل انتخاب شد. بررسی معیارهای ارزیابی نشان داد که از بین سناریوهای بکار رفته با کاربرد مدل ترکیبی، سناریوی D با ترکیب دادههای ورودی، تراز آبزیرزمینی ماه قبل، بارش، دما و بهرهبرداری از آب زیرزمینی بهعنوان سناریو بهینه مدل ترکیبی انتخاب شد. برای سناریو D، چاه مشاهدهای اوّل پارامترهای MAPE، RMSE، NASH بهترتیب مساوی 0/29، 0/47 متر و 0/99 بهدست آمد. برای چاه مشاهدهای دوّم سناریوی C با ترکیب دادههای ورودی، تراز آب زیرزمینی ماه قبل، بارش و بهرهبرداری از آب زیرزمینی بهعنوان سناریو بهینه انتخاب شد و برای همان پارامترها مقادیر 0/20 ، 0/26 متر و 0/99 بهدست آمد. برای چاه سوّم سناریوی A با دادههای ورودی، تراز آب زیرزمینی ماه قبل بهعنوان سناریو بهینه مدل ANFIS-GWO انتخاب شد و مقادیر همان پارامترها برای این سناریو برابر 0/29، 0/41 متر و 0/99 بهدست آمد. بر اساس نتایج، الگوریتم گرگ خاکستری در آموزش مدل ANFIS توانست میانگین خطای پیشبینی را به مقدار 03/ 0 (RMSE) و 0/02 (MAPE) متر کاهش و مقدار میانگین NASH را به میزان 0/01 افزایش و سبب افزایش دقت پیشبینیها شود.