4 نتیجه برای شبکههای عصبی
مهدی غلام زاده، سعید مرید، مجید دلاور،
جلد 15، شماره 56 - ( 4-1390 )
چکیده
برای مدیریت خشکسالی در مناطق خشک که اتکای بیشتری به سدها و ذخیرهسازی آبهای سطحی دارند، استفاده از سیستمهای هشدار سریع خشکسالی(DEWS) راهبردی مفید میباشد. در تحقیق حاضر تلاش شده است تا چنین سیستمی طراحی شود که از سه بخش اصلی شامل: 1) پایش خشکسالی 2) پیشبینی ورودیهای رودخانه و مصرف آب و 3) محاسبه یک شاخص هشدار برای مدیریت خشکسالی تشکیل میشود. این سیستم برای سد زاینده رود ارائه شده است. بدین منظور، ابتدا جریان ورودی به سد و مصارف با استفاده از شبکههای عصبی مصنوعی در یک دوره 6 ماهه با در نظر گرفتن عدم قطیعت مربوط، در سطوح احتمالاتی مختلف پیشبینی گردید.
همچنین بر اساس اطلاعات تاریخی ذخیره آب مخزن و روش نگاشت خود سامان یافته (SOFM)، شدت خشکسالی در 5 دسته (بدون خشکسالی ، خشکسالی ضعیف، خشکسالی با شدت کم، خشکسالی شدید و خشکسالی خیلی شدید) تعیین شد. سپس یک شاخص هشدار خشکسالی (DAI) با توجه به شرایط جاری مخزن سد، ورودیها و مصرف آتی آب محاسبه گردید. در نهایت بر اساس نتایج حاصل از شاخص محاسبه شده، سطوح مختلف هشدار از وضعیت نرمال تا شرایط کم آبی شدید مشخص شد. نتایج نشان داد که استفاده از سیستم هشدار سریع طراحی شده میتواند نقش مؤثری در مدیریت مخزن سد زاینده رود، تعیین سیاستهای جیره-بندی و همچنین کاهش خسارات خشکسالی داشته باشد.
کامیار بیات، سید مجید میرلطیفی،
جلد 16، شماره 61 - ( 7-1391 )
چکیده
تابش خورشیدی رسیده به سطح زمین در برآورد تبخیر- تعرق گیاهان و مطالعات هیدرولوژی عامل بسیار مهمی میباشد. به منظور برآورد مقدار تابش کل خورشیدی روزانه بر یک سطح افقی، از شبکههای عصبی مصنوعی و همچنین از پنج مدل تجربی شامل مدلهای فائو (نشریه 56)، هارگریوز-سامانی، محمود-هابرد، باهل و آناندل استفاده شد. دادههای مورد استفاده از سه ایستگاه هواشناسی کرج، شیراز و رامسر که براساس طبقهبندی اقلیمی دومارتن بهترتیب دارای اقلیمهای خشک، نیمهخشک و بسیار مرطوب میباشند و مقدار تابش کل خورشیدی روزانه در این سه ایستگاه بهصورت روزانه ثبت میشود در دوره آماری 1985 تا 1990 (6 سال) انتخاب شدند. دقت مدلهای مذکور در هر یک از سه ایستگاه بررسی شدند. از بین تمام مدلهای استفاده شده برای تخمین تابش کل خورشیدی روزانه، مدل شبکه عصبی مصنوعی با ورودیهای ساعات آفتابی روزانه و حداکثر ساعات آفتابی روزانه در هر سه ایستگاه کرج، شیراز و رامسر بهترتیب با ریشه متوسط مجذور خطا برابر 08/2، 85/1 و 05/2 مگاژول بر مترمربع در روز بهترین مدلها بودند. بعد از آن مدل فائو (نشریه 56) که تابش کل خورشیدی را براساس پارامتر ساعات آفتابی تخمین میزند، از بیشترین دقت برآورد برخوردار بود. در مقابل مدلهای ذکر شده، مدلهای شبکههای عصبی مصنوعی با پارامترهای ورودی دمایی (دمای حداقل و حداکثر) و همچنین مدلهای هارگریوز- سامانی، آناندل و محمود-هابرد که مدلهای دمایی هستند، از دقت کمتری برخوردارند و جهت تخمین تابش کل خورشیدی بهصورت روزانه مناسب نمیباشند
فرشته ظریف، علی عصاره، مهدی اسدی لور، حسین فتحیان، داود خدادادی دهکردی،
جلد 26، شماره 2 - ( 6-1401 )
چکیده
پیشبینی دقیق و قابل اعتماد از سطح آب زیرزمینی در یک منطقه برای استفاده پایدار و مدیریت منابع آب بسیار مهم است. این پژوهش با هدف ارزیابی شبکههای عصبی مصنوعی (ANNs)؛ پیشرونده عمومی (GFF) و تابع پایه شعاعی (RBF) در پیشبینی ماهانه تراز سطح آب زیرزمینی در دشت دزفول- اندیمشک در جنوب غربی ایران انجام شد. برای تعیین متغیرهای مؤثر ورودی در ANNs از الگوریتم اطلاعات متقابل جزئی (PMI) استفاده شد. نتایج بهکارگیری الگوریتم PMI نشان میدهد که متغیرهای ورودی مؤثر بر پیشبینی ماهانه تراز سطح آب زیرزمینی برای پیزومترهای تحت تأثیر برداشت و تغذیه آب، فقط شامل تراز سطح آب در ماه فعلی است. همچنین متغیرهای ورودی مؤثر بر پیشبینی تراز سطح آب برای پیزومترهای تحت تأثیر فقط برداشت آب، به ترتیب شامل تراز سطح آب در ماه فعلی، تراز سطح آب در یک ماه قبل، تراز سطح آب در دو ماه قبل، مختصات عرضی پیزومتر به UTM، تراز سطح آب در سه ماه قبل، تراز سطح آب در چهار ماه قبل، تراز سطح آب در پنج ماه قبل و مختصات طولی پیزومتر به UTM است. علاوه بر این متغیرهای ورودی مؤثر بر پیشبینی ماهانه تراز سطح آب زیرزمینی برای پیزومترهای نه تحت تأثیر برداشت و نه تغذیه آب، به ترتیب شامل تراز سطح آب در ماه فعلی، تراز سطح آب در یک ماه قبل، تراز سطح آب در دو ماه قبل، تراز سطح آب در سه ماه قبل، تراز سطح آب در چهار ماه قبل، تراز سطح آب در پنج ماه قبل، تراز سطح آب در شش ماه قبل، مختصات عرضی پیزومتر به UTM و مختصات طولی پیزومتر به UTM است. نتایج نشان میدهد که شبکه GFF از دقت بیشتری نسبت به شبکه RBF، در پیشبینی ماهانه تراز سطح آب زیرزمینی برای پیزومترهای شامل برداشت و تغذیه آب و پیزومترهای شامل فقط برداشت آب برخوردار است. علاوه بر این شبکه RBF دقت بیشتری در پیشبینی ماهانه تراز سطح آب زیرزمینی برای پیزومترهای شامل نه برداشت و نه تغذیه آب نسبت به شبکه GFF برخوردار است.
مهدی ماجدی اصل، توحید امیدپور علویان، مهدی کوهدرق، وحید شمسی،
جلد 27، شماره 3 - ( 9-1402 )
چکیده
سرریزهای غیرخطی ضمن دارا بودن مزیتهای اقتصادی، قابلیت عبوردهی بیشتری را نسبت به سرریزهای خطی دارند. این سرریزها با افزایش طول تاج در یک عرض مشخص، در مقایسه با سرریزهای خطی راندمان دبی بیشتر با ارتفاع آزاد کمتر را در بالادست دارند. الگوریتمهای هوشمند بهدلیل توانایی زیاد در کشف رابطههای دقیق پیچیدۀ مخفی بین پارامترهای مستقل مؤثر و پارامتر وابسته و همچنین صرفهجویی مالی و زمانی، جایگاه بسیار ارزشمندی بین پژوهشگران پیدا کردهاند. در این پژوهش عملکرد الگوریتمهای ماشینبردار پشتیبان (SVM) و برنامهریزی بیان ژن (GEP) در پیشبینی ضریب دبی سرریزهای غیرخطی قوسی به کمک 243 سری دادۀ آزمایشگاهی برای سناریو اول و 247 سری داده آزمایشگاهی برای سناریو دوم بررسی شده است. پارامترهای هندسی و هیدرولیکی استفاده شده شامل بار آبی (HT/p)، ارتفاع سرریز (P)، نسبت بار آبی کل ، زاویه سیکل قوسی (Ɵ)، زاویه دیواره سیکل(α) و ضریب دبی (Cd) است. نتایج هوش مصنوعی نشان داد که ترکیب پارامترهای (H_T/p ،α ،Ɵ و Cd) بهترتیب در الگوریتمهای GEP و SVM در مرحلۀ آموزش مربوط به سناریو اول (سرریز کنگره¬ای با زاویۀ دیوارۀ سیکل 6 درجه) بهترتیب برابر است با (0/9811=R2)، (RMSE=0/02120)، (DC=0/9807)، (R2=0/9896)، (RMSE=0/0189)، (DC=0/9871). (در سناریو دوم (سرریز کنگرهای با زاویۀ دیوارۀ سیکل 12 درجه) بهترتیب برابراست با (0/9770=R2)،(RMSE=0/0193)، (DC=0/9768) و (9908/0=R2)، (RMSE=0/0128)، (DC=0/9905) که در مقایسه با دیگر ترکیبها منجر به بهینهترین خروجی شده است که نشاندهنده دقت بسیار مطلوب هر دو الگوریتم در پیشبینی ضریب دبی سرریز غیرخطی قوسی است. نتایج آنالیز حساسیت نشان داد که پارامتر مؤثر در تعیین ضریب دبی سرریز غیرخطی قوسی در GEP و هم در SVM پارامتر نسبت بار آبی کل (HT/p) است. مقایسه نتایج این پژوهش با سایر پژوهشگران نشان میدهد که شاخصههای ارزیابی برای الگوریتمهای GEP و SVM پژوهش حاضر نسبت به سایر پژوهشگران برآورد بهتری دارند.