33 نتیجه برای شبکه عصبی
علیرضا مساح بوانی، سعید مرید،
جلد 9، شماره 4 - ( 10-1384 )
چکیده
تحقیق حاضر آثار ناشی از تغییر اقلیم روی دما، بارندگی و رواناب در حوضه آبریز رودخانه زایندهرود اصفهان را تحت دو سناریوی اقلیمی و برای دو دوره سیساله 2039-2010 و 2099-2070 میلادی، تجزیه و تحلیل مینماید. اطلاعات مورد نیاز از مدل گردش عمومی GCM) HadCM3) شامل مقادیر بارندگی و درجه حرارت (متوسط، حداقل و حداکثر) ماهانه در دورههای آتی، تحت دو سناریوی A2 و B2 از سناریوهای تولید گازهای گلخانهای SRES تأمین شده است. در سناریوی A2 به دلیل تأکید بر رشد صنایع و توجه کمتر به محیط زیست افزایش بیشتری در گازهای گلخانهای نسبت به سناریوی B2 که توجه بیشتری به محیط زیست دارد، فرض شده است. نتایج در مجموع نشان از کاهش بارندگی و افزایش درجه حرارت در هر دو دوره و به خصوص در دوره دوم را داشته، به طوریکه در طی این دورهها میزان کاهش بارندگی 10 و 16 درصد و افزایش درجه حرارت به میزان 6/4 و 2/3 درجه سانتیگراد بهترتیب در سناریوهای A2 وB2 پیشبینی میشود. جهت بررسی تأثیر این تغییرات بر جریان ورودی به سد چادگان با استفاده از تکنیک شبکه عصبی مصنوعی (Artificial Neural Network, ANN) و با بررسی ورودیها و معماریهای مختلف، شبیهسازی بارش - رواناب در حوضه انجام شده که خروجیهای مدل، کاهش جریان تا 8/5 درصد و افزایش ضریب تغییرات جریان تا 3 برابر را برای دورههای آتی نشان میدهد. مقایسه سناریوهای A2 و B2 نشان از وضعیت بحرانیتر سناریوی A2 در این حوضه دارد.
بهاء الدین نجفی، منصور زیبایی، محمدحسین شیخی، محمدحسن طرازکار،
جلد 11، شماره 1 - ( 1-1386 )
چکیده
در این مطالعه بهمنظور پیشبینی قیمت عمده فروشی برخی محصولات زراعی شامل گوجهفرنگی، پیاز و سیبزمینی در استان فارس، برای افق زمانی یک، سه و شش ماه آتی از روشهای معمول پیشبینی و شبکه عصبی مصنوعی استفاده شد. دادههای مورد نیاز برای دوره مهر 1377 تا تیرماه 1384 از اداره جهاد کشاورزی استان فارس اخذ گردید. از دادههای دوره مهرماه 1377 تا دیماه 1383بهمنظور مقایسه روشها و از دادههای شش ماه آخر جهت بررسی قدرت پیش بینی استفاده شد. بهمنظور مقایسه خطای پیشبینی روشهای مختلف نیز، از معیارهای میانگین قدرمطلق خطا، میانگین مجذور خطا و معیار درصد میانگین مطلق خطا بهره گرفته شد. نتایج مطالعه نشان داد که شبکه عصبی مصنوعی دارای خطای پایینتری جهت پیشبینی قیمت محصولات مختلف در افق زمانی یک و سه ماه آینده میباشد و بهطور معنیداری از سایر روشها دقیقتر است. اما در پیشبینی شش ماه آینده تفاوت معنیداری بین روشهای معمول و شبکه عصبی مصنوعی وجود ندارد.
محمدتقی دستورانی،
جلد 11، شماره 40 - ( 4-1386 )
چکیده
در این تحقیق توانایی مدلهای شبکه عصبی مصنوعی جهت شبیه سازی رفتار هیدرولوژیکی آب در حوزههای آبخیز مورد بررسی قرار گرفته است. هدف اصلی تحقیق بررسی کاربرد انواع مختلف شبکههای عصبی مصنوعی جهت شبیه سازی جریان در یک حوزه آبخیز با چند ایستگاه هیدرومتری و پیش بینی بهنگام جریانهای سیلابی در پایین دست بوده است. منطقه مورد بررسی قسمت فوقانی رودخانه درونت (Derwent) میباشد که یکی از شاخههای اصلی رودخانه ترنت (Trent river)در ناحیه مرکزی انگلستان است. جریان سیلاب رودخانه 3، 6، 9 و 12 ساعت قبل از وقوع در محل ایستگاه هیدرومتری واتستندول (Whatstandwell) با استفاده از دادههای اندازهگیری شده در بالا دست پیش بینی گردیده است. سه نوع شبکه عصبی مختلف که عبارتاند از شبکه پرسپترون چند لایه(MLP network) ، شبکه برگشتی (Recurrent network)و شبکه برگشتی با تأخیر زمانی(Time lag recurrent network) بهصورت جداگانه مورد استفاده و ارزیابی قرار گرفتند. همچنین جهت بررسی تأثیر طول دادههای ورودی در کارایی مدلهای شبکه عصبی، شبیه سازیهای مختلف با استفاده از دادههای هیدرولوژیکی با طول و تعداد متفاوت مورد استفاده قرار گرفت. دادههای با فاصله اندازهگیری 30 دقیقهای با طول دورههای 1 ماه، 6 ماه و سه سال ( که تولید تعداد مشاهدههای متفاوتی را مینماید) بدین منظور مورد استفاده واقع شد. براساس نتایج بهدست آمده هرچند شبکههای عصبی مصنوعی بهصورت عمومی و کلی کارایی مناسبی را در شبیه سازی و پیش بینی دبی جریان از خود نشان دادهاند ولی نوع شبکه عصبی مصنوعی و نیز خصوصیات دادههای ورودی مدل خصوصاً دادههای آموزشی پارامترهای بسیار مهمی هستند که تأثیر عمدهای را روی خروجیهای مدل دارند.
علی رحیمی خوب، سید محمود رضا بهبهانی ، محمدهادی نظری فر،
جلد 11، شماره 42 - ( 10-1386 )
چکیده
مدلهای پیشبینی دمای هوا با استفاده از دادههای ماهوارهای، مبتنی بر متغیرهای دمای سطح زمین و شاخص پوشش گیاهی هستند. این متغیرها با اعمال تصحیحات اتمسفری بر روی دادههای فوق تعیین میشوند. میزان بخار آب، اوزن و عمق اپتیکی ذرات معلق در جو از دادههای مورد نیاز برای تصحیح اتمسفری باندهای مرئی هستند ولی در اغلب مناطق ایران، این پارامترها اندازهگیری نمیشوند. همچنین با استفاده از روشهای موجود، دمای سطح زمین تا دقت 2 درجه سانتیگراد تعیین میشود. در این تحقیق با توجه به محدودیتهای فوق، دقت پیشبینی دمای بیشینه هوا با استفاده از دادههای بدون تصحیح اتمسفری شده ماهواره نوا و مدل شبکه عصبی مورد بررسی قرار گرفت. برای این منظور، مدلهای مختلف شبکه عصبی، حاصل از ترکیبهای مختلف دادههای 4 باند ماهواره نوا و 3 متغیر جغرافیایی به عنوان ورودیهای مدل ساخته شدند و بهترین مدل انتخاب شد. نتایج نشان داد، مدل شبکه عصبی با ساختار 6 نرون در لایه ورودی (شامل 4 باند ماهواره نوا، روز شمار سال و ارتفاع زمین) و 19 نرون در لایه پنهان بهترین مدل میباشد. در این ساختار حدود 4/91 درصد نتایج در محدوده دقت 3 درجه سانتیگراد واقع شدند و معیارهای آماریRMSE ، R2 و MBE به ترتیب 62/0، 7/1 درجه سانتیگراد و 01/0- درجه سانتیگراد میباشند.
رضا مهاجر، محمدحسن صالحی، حبیب اله بیگی هرچگانی،
جلد 13، شماره 49 - ( 7-1388 )
چکیده
منظور نمودن شاخصهای حاصلخیزی خاک از جمله ظرفیت تبادل کاتیونی(CEC) میتواند در ارتقا و افزایش کیفیت نقشههای خاک مفید باشد. برای اندازهگیری CEC که زمانبر و پرهزینه است میتوان از برآورد آن از طریق توابع انتقالی استفاده کرد. در این تحقیق، ابتدا چند محدوده (Delineation) از دو واحد نقشه همگون (Consociation)، شامل دو فامیل خاک واقع در دشت شهرکرد، یک واحد نقشه شامل سری شهرک و دیگری شامل سری چهارمحال، مشخص شد. سپس، از اعماق صفر تا20 و30 تا50 سانتیمتری محدودهها نمونهگیری و چند ویژگی فیزیکی- شیمیایی هر نمونه در آزمایشگاه اندازهگیری شد. سه ویژگی درصد رس، درصد ماده آلی و رطوبت در پتانسیل 1500- کیلو پاسکال بیشترین همبستگی را با CEC نشان دادند. توابع انتقالی با استفاده از رگرسیون خطی و شبکه عصبی استخراج شد. در این مطالعه، برای تمام مدلهای شبکه عصبی یک لایه میانی به همراه یک گره کافی به نظر رسید. در هر دو روش، مدلی که شامل پارامترهای زود یافت ماده آلی و رس بود به وسیله روش رگرسیون با 81/0=R2 و 2/7= RMSE و از طریق شبکه عصبی با ضریب یادگیری 3/0 و تعدادتکرار(Epoch) 40 و 88/0=R2 و34/0= RMSE بهترین و دقیقترین تخمین را در بین مدلها جهت تخمین CEC نشان داد. تفکیک داده برحسب لایه و فامیل باعث افزایش دقت و صحت توابع گردید. تکنیک شبکه عصبی در مقایسه با رگرسیون، مدلهایی باR2 بیشتر و RMSE کمتر تولید کرد.
حسین طبری، صفر معروفی، حمید زارع ابیانه، رضا امیری چایجان، محمدرضا شریفی، علی محمد آخوندعلی،
جلد 13، شماره 50 - ( 10-1388 )
چکیده
معمولاً برای ارزیابی منابع آب مرتبط با برف در حوضه های کوهستانی، از آب معادل برف استفاده می شود. در این تحقیق، با بهره گیری از داده های مشاهده ای، کاربرد رگرسیون غیرخطی، شبکه عصبی مصنوعی و همچنین بهینه سازی پارامترهای شبکه با روش الگوریتم ژنتیک در برآورد ضخامت برف و آب معادل آن بررسی شد. بدین منظور مقادیر برآورد شده با شبکه عصبی مصنوعی، روش تلفیقی شبکه عصبی- الگوریتم ژنتیک و روش رگرسیونی با مقادیر مشاهده شده مقایسه گردید. بدین-منظور اندازهگیریهای صحرایی در بهمن سال 1384 در سراب کارون انجام گردید. همچنین ضریب همبستگی، میانگین مربع خطا و میانگین خطای مطلق برای ارزیابی کارایی مدلهای مختلف شبکه های عصبی مصنوعی و رگرسیون غیرخطی مورد استفاده قرارگرفت. با توجه به نتایج به دست آمده، روش های شبکه عصبی مصنوعی و شبکه عصبی تلفیق یافته با الگوریتم ژنتیک در برآورد آب معادل برف مناسب تشخیص داده شدند. به طور کلی از میان روشهای به کار رفته، روش شبکه عصبی تلفیق یافته با الگوریتم ژنتیک بهترین نتیجه (84/0r=، 041/0MSE= و 051/0MAE=) را در بر داشته است. با توجه به پارامترهای مورد بررسی، ارتفاع از سطح دریا، مهمترین پارامتر مؤثر جهت برآورد آب معادل برف است.
علی رحیمی خوب، سید محمد رضا بهبهانی، محبوبه جمشیدی،
جلد 13، شماره 50 - ( 10-1388 )
چکیده
تابش خورشید رسیده به زمین یکی از پارامترهای مورد نیاز برای مطالعات منابع آب، محیط زیست و کشاورزی است. این پارامتر به ندرت در ایستگاههای هواشناسی اندازهگیری می شود و از این رو روشهای تجربی زیادی برای برآورد آن با استفاده از سایر پارامترهای هواشناسی ارائه شده است. در این تحقیق دو روش تجربی انگستروم و هارگریوز - سامانی که به ترتیب مبتنی بر ساعات آفتابی و دمای هوا هستند، جهت برآورد تابش روزانه خورشید در جنوب شرق تهران واسنجی و ارزیابی شدند. همچنین دو مدل شبکه عصبی با ورودیهای مشابه با مدل های تجربی فوق ارائه شدند. نتایج بررسی نشان داد، مدل های تجربی فوق و مدلهای شبکه های عصبی با دقت خوبی تابش خورشید را برآورد می کنند، لیکن، مدل های مبتنی بر ساعات آفتابی نسبت به مدلهای مبتنی بر دمای هوا برتری دارند. مدل شبکه عصبی مبتنی بر ساعات آفتابی با ضریب تعیین (R2) برابر 97/0 و جذر میانگین مربع خطا (RMSE) برابر 34/1 مگاژول بر متر مربع در روز بهترین نتایج را ارائه داد.
همایون فقیه،
جلد 14، شماره 51 - ( 1-1389 )
چکیده
برآورد توزیع مکانی بارش برای اجرای طرح های مطالعات منابع آب، خشکسالی، طرح های آمایش سرزمین، محیط زیست، آبخیزداری و طرح های جامع کشاورزی ضروری می-باشد. تغییرات زیاد مقدار بارش در نقاط مختلف، کمبود ایستگاه های اندازه گیری و پیچیدگی ارتباط بارش با پارامترهای اثرگذار بر آن، اهمیت توسعه روش های کارآمد را در برآورد توزیع مکانی بارش دو چندان می نماید. شبکه عصبی مصنوعی به عنوان یک روش نوین، در مدل سازی و پیش بینی فرآیندهایی که برای شناخت و توصیف دقیق آنها راه حل و رابطه صریحی وجود نداشته، موفق بوده است. این تحقیق با هدف بررسی کارایی شبکه عصبی مصنوعی در برآورد مکانی بارش ماهانه انجام گرفت. بدین منظور شبکه عصبی با ساختار پرسپترون چند لایه برای تدوین مدل برآورد مکانی بارش در پنج ایستگاه سینوپتیک و باران سنجی، واقع در استان کردستان، به کارگرفته شد. برای طراحی ساختار مدل در هر ایستگاه، با تغییر پارامترهای قابل تنظیم، (شامل تابع انتقال، قانون آموزش، مقدار مومنتم، تعداد لایه پنهان، تعداد نرون لایه پنهان و تعداد الگوها)، شبکه های عصبی مختلف ساخته و اجرا شد. در هر مورد، ساختاری که کمترین مقدار جذر میانگین مربعات خطا (RMSE) را داشت به عنوان مدل نهایی انتخاب گردید. از آنجا که انتخاب هر یک از پارامترهای متغیر شبکه عصبی مستلزم آزمون و خطاهای مکرر و در نتیجه آموزش تعداد زیادی شبکه با ساختار مختلف بود، از روش الگوریتم ژنتیک برای بهینه یابی این پارامترها استفاده شد و کارایی این روش در بهینه سازی شبکه عصبی بررسی گردید. نتایج نشان داد، شبکه عصبی در مدل سازی و برآورد مکانی بارش ماهانه از دقت بالایی برخوردار است. همچنین تلفیق آن با الگوریتم ژنتیک، برای بهینهسازی شرایط اجرای شبکه عصبی، مثبت ارزیابی گردید و روش تلفیقی در اکثر موارد برتری خود را نسبت به اجرای شبکه عصبی بدون بهینه سازی نشان داد. دقیق ترین مدل در همه ایستگاه های مورد مطالعه، با استفاده از تابع انتقال سیگموئید و قانون آموزش لونبرگ مارکوارت حاصل گردید. در مدل های منتخب، مقدار ضریب تبیین (2R) بین مقادیر خروجی مدل و داده های مشاهده شده در ایستگاه، برابر با 86/0، 89/0، 94/0، 77/0 و 94/0 به دست آمد.
حمیده افخمی، محمدتقی دستورانی، حسین ملکی نژاد، حسین مبین،
جلد 14، شماره 51 - ( 1-1389 )
چکیده
خشکسالی یک شکل طبیعی از اوضاع آب و هوایی است که تکرار آن در طول زمان امری اجتناب ناپذیر می باشد. هدف اصلی این تحقیق بررسی تأثیر نوع عوامل اقلیمی در پیش بینی خشکسالی با استفاده از شبکه عصبی مصنوعی در مناطق مختلف استان یزد است. در اغلب ایستگاه های هواشناسی منطقه یزد (ایستگاههای بارانسنجی) تنها دادههای مربوط به عامل بارش موجود می باشد، در حالی که ایستگاه های همدیدی علاوه بر بارش سایر عوامل هواشناسی از جمله دمای بیشینه، دمای میانگین، رطوبت نسبی، سرعت میانگین باد، جهت باد و میزان تبخیررا نیز دارا هستند. در این تحقیق سعی گردید که نقش تعداد و نوع عوامل اقلیمی (به عنوان عوامل ورودی مدل) در دقت پیشبینی خشکسالی بر اساس شبکههای عصبی مصنوعی مورد ارزیابی قرار گیرد. منطقه مورد بررسی بخشی از استان یزد است که در بر گیرنده 13 ایستگاه کلیماتولوژی و 1 ایستگاه همدیدی است. جهت انجام این بررسی میانگین متحرک سه ساله بارش در تمام ایستگاه ها محاسبه شد و سپس با استفاده از مدل شبکه برگشتی با تأخیر زمانی(Time Lag Recurrent Network)، میانگین متحرک بارش یک سال آینده پیشبینی گردید، که خود عامل اصلی ارزیابی وضعیت خشکسالی در سال آتی است. علاوه بر آن در ایستگاه همدیدی یزد نیز شبیهسازیها با ترکیبات مختلفی از ورودی ها انجام گرفت. بهترین ترکیب ورودی ترکیب " میانگین متحرک بارش - دمای بیشینه" بود که ضریب کارایی آن حدود 90/0 محاسبه شد. بررسی ها نشان داد علیرغم این که در 13 ایستگاه باران سنجی منطقه شبیه سازیها تنها با یک ورودی (بارش) انجام گرفت، در برخی ایستگاه ها نتایج قابل قبولی به دست آمد که حتی ضریب کارایی محاسبه شده بر اساس نتایج حاصله بسیار نزدیک به ایستگاه یزد (با ورودی های مختلف) محاسبه گردید. (R2 از 48/0 در ایستگاه آقا خرانق تا 90/0 در ایستگاه گاریز متغیر بود.) البته میزان درستی پیشبینی ها هنگامی که فقط از یک عامل ورودی در مدل استفاده شده است از ایستگاهی به ایستگاه دیگر متفاوت بوده است. نتایج به دست آمده گویای انعطافپذیری قابل ملاحظه مدلهای شبکه عصبی مصنوعی است که آنها را به ابزار مناسبی جهت مدلسازی در شرایطی که با فقر داده مواجه هستیم مبدل می سازد.
مجتبی شادمانی ، صفر معروفی ،
جلد 15، شماره 55 - ( 1-1390 )
چکیده
در این تحقیق، با استفاده از دادههای مشاهده شده تشت کلاس A، کاربرد روشهای رگرسیون غیر خطی، شبکههای عصبی مصنوعی، سیستم استنتاج فازی- عصبی و همچنین روش تجربی استیفنز- استوارت، جهت برآورد تبخیر روزانه منطقه کرمان مورد بررسی قرار گرفت. در روشهای شبکه عصبی مصنوعی، سیستم استنتاج فازی- عصبی و رگرسیون غیر خطی، مقادیر دما، فشار، رطوبت نسبی، تابش خورشیدی و سرعت باد، با پنج ترکیب مختلف به عنوان متغیرهای ورودی و تبخیر از تشت به عنوان متغیر خروجی به کار گرفته شد. به منظور ارزیابی کارایی روشهای به کار رفته، ضمن مقایسه مقادیر برآورد شده و مشاهده شده، همچنین از شاخصهای آماری ضریب تعیین (R2)، جذر میانگین مربع خطا (RMSE) و میانگین خطای مطلق (MAE) استفاده گردید. با توجه به دادههای مورد استفاده مقادیر میانگین ماهانه و سالانه تبخیر منطقه به ترتیب 272 و 3263 میلیمتر است. نتایج این تحقیق نشان داد که روش فازی- عصبی نسبت به بقیه روشها، از دقت بیشتری برای برآورد تبخیر از تشت برخودار است. در این مدل، که در آن از تمام متغیرهای ورودی استفاده شده، مقادیر R2، RMSE و MAE در مرحله آزمون به ترتیب 85/0، 61/1 (میلیمتر در روز) و 24/1 (میلیمتر در روز) است. تحلیل حساسیت متغیرهای ورودی روش فازی- عصبی نشان داد که مقادیر دما و سرعت باد (به عنوان متغیرهای ورودی) به ترتیب بیشترین تأثیر را بر تبخیر دارا هستند. همچنین با توجه به دقت کم مدل استیفنز- استوارت، سعی شد که مقادیر ضرایب تجربی آن با استفاده از دادههای تابش و دما اصلاح گردد، که نتایج مطلوبی به دست نیامد.
سمیه معلمی، ناصر دواتگر،
جلد 15، شماره 55 - ( 1-1390 )
چکیده
گنجایش تبادل کاتیونی یکی از ویژگیهای شیمیایی مهم خاک بوده که اندازهگیری آن بسیار پرهزینه و وقتگیر است. توابع انتقالی، میتواند راهکاری مناسب در برآورد این پارامتر به جای اندازهگیری مستقیم باشد. هدف از این تحقیق، توسعه چند تابع انتقالی مناسب برای برآورد گنجایش تبادل کاتیونی خاکهای استان گیلان با استفاده از دو روش رگرسیون خطی چندگانه و شبکه عصبی مصنوعی و تأثیر گروهبندی خاکها بر پایه کلاسهای بافتی و کربن آلی بر بهبود توانایی برآورد گنجایش تبادل کاتیونی به وسیله دو روش بود. برای این تحقیق از 1662 داده مربوط به خاکهای استان گیلان از بانک اطلاعات آزمایشگاه شیمی خاک مؤسسه تحقیقات برنج کشور استفاده شد. نتایج نشان داد که کربن آلی مهمترین متغیر در برآورد گنجایش تبادل کاتیونی در کل دادهها و کلیه کلاسهای بافتی و کربن آلی در هر دو روش رگرسیون و شبکه عصبی بوده است. شبکه عصبی مصنوعی نسبت به روش رگرسیون در برآورد گنجایش تبادل کاتیونی در کل دادهها، کارایی بهتری داشت و گروهبندی دادهها تنها در کلاسهای بافتی شن و شنی رسی لومی در روش شبکه عصبی مصنوعی، موجب بهبود محسوس پیشبینیها نسبت به کل دادهها شد.
روح اله رضایی ارشد، غلامعباس صیاد، مسعود مظلوم، مهدی شرفا، علیرضا جعفرنژادی،
جلد 16، شماره 60 - ( 4-1391 )
چکیده
اندازهگیری مستقیم ویژگیهای هیدرولیکی خاک وقتگیر و پرهزینه بوده و تا حدی به علت غیرهمگن بودن خاک و خطاهای آزمایشگاهی غیرقابل اعتماد است. در عوض ویژگیهای هیدرولیکی خاک میتواند از جایگزینی دادههای زودیافتی مانند بافت خاک و چگالی ظاهری با استفاده از توابع انتقالی به دست آید. شبکههای عصبی و رگرسیون آماری از جمله روشهایی هستند که برای تخمین توابع انتقالی خاک (PTFs) استفاده میشوند. در این پژوهش از شبکه عصبی نوع پرسپترون چندلایه (MLP) و مدل-های رگرسیونی حذف تدریجی متغیرها و گام به گام ورود متغیرها برای بسط این توابع برای تخمین هدایت هیدرولیکی اشباع خاک با استفاده از چگالی ظاهری، تخلخل کل و درصد توزیع اندازه ذرات خاک استفاده شد. دادهها از 125پروفیل خاک مربوط به مطالعات خاکشناسی و اصلاح اراضی موجود در سازمان آب و برق خوزستان تهیه شد. نتایج نشان داد که شبکه MLP با الگوریتم آموزشی بیزین با ضریب تعیین (65/0=2R) و خطای ( 04/0RMSE=) نسبت به مدلهای رگرسیونی کارایی بهتری در تخمین هدایت هیدرولیکی اشباع خاک داشت.
بیژن خلیلیمقدم، مجید افیونی، احمد جلالیان، کریم عباسپور، امیراحمد دهقانی،
جلد 19، شماره 71 - ( 3-1394 )
چکیده
در سالهای اخیر با ظهور سامانه اطلاعات جغرافیایی و تکنولوژی سنجش از دور، ویژگیهای توپوگرافیکی (ارتفاع، شیب و جهت شیب) و ویژگیهای پوشش گیاهی به راحتی بهوسیله مدلهای رقومی ارتفاع و شاخص پوشش گیاهی (NDVI) در مقیاسهای مختلف (حوزهای و منطقهای) قابل دسترس میباشد. هدف از انجام این پژوهش، بررسی امکان استفاده از ویژگیهای توپوگرافیکی و پوشش گیاهی بههمراه ویژگیهای خاک بهعنوان ویژگیهای زود یافت برای تخمین هدایت هیدرولیکی اشباع خاک است. برای این کار توزیع اندازه ذرات خاک، کربن آلی، کربنات کلسیم و چگالی ظاهری در افقهای رویین و زیرین و ویژگیهای توپوگرافیکی و NDVI از افق رویین خاک اندازهگیری شدند. سه ساختار شبکه عصبی پرسپترون برای مقایسه با رگرسیون چندمتغیره خطی مورد استفاده قرار گرفتند. کارایی توابع انتقالی خاک و توابع پیشبینی مکانی خاک به وسیله ضریب همبستگی اسپیرمن (r)، میانگین مربعات خطای نرمال شده (NMSE) و میانگین خطای مطلق(MAE) بین مقادیر اندازهگیری شده و مشاهده شده مورد ارزیابی قرار گرفت. نتایج نشان داد که ویژگیهای توپوگرافیکی و پوشش گیاهی از متغیرهای حساس در تخمین هدایت هیدرولیکی اشباع خاک در مراتع زاگرس مرکزی میباشند. بهطور کلی شبکههای عصبی (87/0=r) داری کارایی بهتری از رگرسیون چندمتغیره خطی (69/0=r) در تخمین هدایت هیدرولیکی اشباع خاک هستند.
محمد حسین مختاری، احمد نجفی،
جلد 19، شماره 72 - ( 5-1394 )
چکیده
طبقهبندی و تهیه نقشه کاربریهای اراضی یکی از پرکاربردترین موارد در استفاده از دادههای سنجش از دور است. تعدادی از روشهای پیشرفتهتر طبقهبندی در دهههای گذشته توسعه پیداکردهاند که از آنها میتوان به شبکههای عصبی مصنوعی و ماشین بردار پشتیبان اشاره کرد. در این مطالعه از تصاویر لندستTM باقدرت تفکیک 30 متر جهت استخراج کاربریهای اراضی با استفاده از دو روش طبقهبندی شبکه عصبی مصنوعی و ماشین بردار پشتیبان اقدام شد. نتایج، دقت بالای طبقهبندیهای شبکه عصبی و ماشین بردار پشتیبان با کرنل شعاعی، هر کدام بهترتیب با دقت کلی 67/90 و 67/91 درصد را نشان داد. ماشین بردار پشتیبان کلاسهایی را که دارای خصوصیات طیفی مشترک بودند بهتر تفکیک کرد. همچنین در قسمتهای مرزی دو نوع کاربری، ماشین بردار پشتیبان قابلیت جداسازی بهتری نسبت به شبکه عصبی داشت و مرز بین دو کلاس ملموس تر بود. با توجه به نتایج گرفته شده، هر دو روش شبکه عصبی و ماشین بردار پشتیبان برای طبقهبندی کاربریهای اراضی خوب بوده، اما روش ماشین بردار پشتیبان با اختلاف 1 درصد در دقت کلی و 2درصد در ضریب کاپا بهتر بود. دقت بالای ماشین بردار پشتیبان میتواند ناشی از مرز تصمیمگیری بهینه آن باشد درحالیکه شبکه عصبی نمیتواند این مرز را ایجاد کند.
مهدی حیات زاده ، جواد چزگی، محمدتقی دستورانی،
جلد 19، شماره 72 - ( 5-1394 )
چکیده
از آنجا که توسعه برنامههای مهار آبهای سطحی ملزم بهدستیابی دقیق رفتارهای جریان و میزان رسوبات آن میباشد لذا کمبود ایستگاههای اندازهگیری رسوب و فقدان آمار کامل رسوب، از جمله دلایل ارزیابی صحیح در شبیهسازی رفتار جریانها و رسوبات آنهاست. از جمله مواردی که در یک حوزه آبخیز از هم تأثیر میپذیرند خصوصیات مورفولوژیکی حوزه و بار رسوبی جریانهای آن میباشد. لذا آگاهی از میزان این ارتباط بهمنظور مدیریت و ساماندهی جریان در پاییندست حوزه حائز اهمیت میباشد. در تحقیق حاضر با استفاده از شبکه عصبی مصنوعی و روشهای رگرسیونی سنجه رسوب براساس دادههای 136 واقعه دبی جریان و رسوب متناظر آن و همچنین پارامترهای مورفولوژیکی به پیشبینی بار رسوبی حوزه باغ عباس اقدام گردیده است. بدینمنظور در گام نخست برای پیشبینی بار رسوب از دو روش مذکور، فقط از دادههای جریان استفاده گردیده و در گام بعدی خصوصیات مورفولوژیکی حوزه از قبیل ضریب شکل و ضریب فشردگی حوزه به مدلها اضافه شده است. نتایج بهدست آمده از این تحقیق نشان میدهد که با بهکارگیری شبکه عصبی از نوع پرسپترون چندلایه (MLP) با الگوریتم لونبرگ- مارکوارت و تابع تحریک از نوع تانژانت سیگموید با دو لایه مخفی و 4 نرون در هر لایه، میتوان با دقت مناسبی میزان دبی بار معلق رسوب را برآورد نمود. همچنین دقت نتایج بهدست آمده از روش شبکه عصبی مصنوعی بهمراتب از دقت روش منحنی سنجه بالاتر میباشد. در ارزیابی روشهای شبکه NGANN, GANN و رگرسیونیSRC, MARS ، بهترتیب میزان ضریب همبستگی 94/0، 93/0، 767/0 و 766/0 و مجذور میانگین مربعات خطا (RMSE) بهترتیب 45/0، 49/0، 3/2 و 3/2 و ضریب نش- ساتکلیف (NS) بهترتیب 71/0، 58/0، 27/0 و 23/0 محاسبه گردید. بنابراین کاراترین روش از بین مدلهای چهارگانه مذکور، شبکه عصبی مصنوعی همراه با دادههای مورفولوژیکی حوزه (GANN) میباشد. ضمناً براساس یافتههای تحقیق اضافه نمودن پارامترهای ژئومورفولوژیکی در روش سنجه رسوب تأثیر چندانی بر روی کارایی این مدل ندارد.
نوید دهقانی، مهدی وفاخواه، عبدالرضا بهرهمند،
جلد 19، شماره 73 - ( 8-1394 )
چکیده
مدلسازی فرایند بارش- رواناب و پیشبینی دبی رودخانه یک اقدام مهم در مدیریت و مهار سیلابها، طراحی سازههای آبی در حوزههای آبخیز و مدیریت خشکسالی است. هدف این تحقیق شبیهسازی جریان روزانه در حوزه آبخیز کسیلیان با مدل WetSpa و شبکه عصبی- فازی تطبیقی است. WetSpa یک مدل پیوسته هیدرولوژیک- فیزیکی است که قابلیت پیشبینی سیلاب در مقیاس حوزه آبخیز با گامهای زمانی مختلف را داراست و شبکه عصبی- فازی تطبیقی هم جزء مدلهای جعبه سیاه میباشند که امروزه مورد توجه زیادی قرار گرفته است. در این تحقیق از آمار باران، تبخیر و دمای ایستگاه هواشناسی سنگده و آمار دبی ایستگاه ولیکبن طی سالهای 1382 تا 1388 استفاده شد. نتایج شبیهسازی با مدلWetSpa نشان داد که این مدل بهخوبی توانسته جریان پایه رودخانه را با معیار ناش ساتکلیف 64/0 در مرحله آزمون شبیهسازی نماید ولی در شبیهسازی جریانهای سیلابی با خطا همراه است که دلیل آن را میتوان به کوچک بودن آبخیز و کوتاه بودن زمان پیمایش اشاره کرد. همچنین این مدل بهخوبی توانسته بیلان آب حوزه آبخیز کسیلیان را شبیهسازی کند. آنالیز حساسیت پارامترهای مدل نشان داد که ضریب افت آب زیرزمینی از بیشترین حساسیت و ضریب روز درجه بارش از کمترین حساسیت برخوردار است. همچنین شبکه عصبی- فازی تطبیقی با ورودی باران با یک روز تأخیر و تبخیر با یک روز تأخیر با معیار ناش ساتکلیف 80/0 در دوره آزمون پاسخهای قابل قبولتری نسبت به مدل WetSpa با معیار ناش ساتکلیف 24/0 داشت.
محمد عیسیزاده، رزگار عربزاده، صابره دربندی،
جلد 20، شماره 77 - ( 8-1395 )
چکیده
انتخاب تکنیک درونیابی بهینه جهت تخمین پارامترهای کیفی آبخوان در نقاط اندازهگیری نشده نقش مهمی در مدیریت کمی و کیفی منابع آب ایفا میکند. هدف اصلی این تحقیق ارزیابی دقت روشهای درونیابی متداول با استفاده از GIS و مدل شبکه عصبی مصنوعی میباشد. بدینمنظور تخمین سه پارامتر کیفی CL، EC و pH آبخوان دشت قروه- دهگان واقع در استان کردستان توسط هر یک از مدلها مورد ارزیابی قرار گرفت. در این تحقیق از دادههای کیفی 56 چاهک مشاهداتی که دارای پراکندگی مناسبی در کل دشت هستند، استفاده گردید. در این تحقیق دادههای 46 چاهک مشاهداتی جهت واسنجی و دادههای 10 چاهک دیگر جهت صحت سنجی مدلها استفاده شدند. نتایج نشان داد که روشهای شبکه عصبی مصنوعی، IDW و کریجینگ (spherical) بهترتیب جهت تخمین پارامترهای کیفی CL، PH و EC از دقت بیشتری نسبت به سایر مدلها برخوردار بودهاند. البته مدل شبکه عصبی در تخمین هر سه پارامتر دارای دقت بسیار خوبی میباشد.در صورت کمبود وقت و همچنین نیاز بهدقت قابل قبول و ریسک کمتر در تخمین پارامترهای کیفی، استفاده از این مدل نسبت به سایر مدلهای آماری بهکار رفته ارجحیت دارد.
علیاصغر واحدی،
جلد 20، شماره 78 - ( 10-1395 )
چکیده
با توجه به بحران کمبود آب در کشور، برآورد هر چه دقیقتر ذخایر آب در اکوسیستمهای جنگلی میتواند از مهمترین راهکارهای مورد استفاده درزمینه مدیریت بهینه منابع و چرخه آب برای توسعه بهرهوری مدنظر قرار بگیرد. بدین منظور، با استفاده از تکنیک شبکه عصبی مصنوعی موجودی وزنی ذخایر آب تنه ۱۷۴ پایه قطع شده درختان گونههای مختلف اعم از راش، آزاد، ممرز، انجیلی، توسکا، بلوط و پلت شبیهسازی شد. از هر بخش از تنه استحصال شده درختان، قطعاتی با ابعاد حجمی ثابت در دمای ۱۰۵ درجه سانتیگراد در آون قرارگرفته و ضریب خشکی و چگالی ویژه کلیه نمونهها اندازهگیری شدند. سه لایه ورودی شامل قطر برابر سینه، ارتفاع تنه و چگالی ویژه برای روند شبیهسازی متغیر پاسخ مورد استفاده قرار گرفتند. برای معماری توپولوژی شبکه عصبی مورد مطالعه از روش سعی و آزمون استفاده شد. نتایج نشان داد که استفاده از قطر برابر سینه بهعنوان تنها لایه ورودی بر مبنای شاخصهای اعتبار قطعیت شبکه عصبی، ۶۵ درصد از واریانس آزمون دادهها را توجیه کرد. با ورود هر سه لایه ورودی، خروجی بهینه با یک لایه پنهان حاوی تابع تانژانت سیگموئیدی در معماری صورت گرفته با تعداد ۱۵ نورون عصبی دارای حداکثر قطعیت برآوردی در جنگلهای آمیخته راش مورد مطالعه است (۰۸/۸۱= RMSE، ۰۰۱/۰= MSE، ۹۲/۰ = ۲R). برای صرفهجویی در هزینهها، نیروی انسانی و جلوگیری از روش برآورد تخریبی، خروجی بهینه حاصل در قالب جعبه سیاه با قابلیت کاربرد در فضای سیستمهای دیجیتالی دارای قابلیت کاربرد وسیع برای پیشبینی ذخایر آب و بهتبع آن مدیریت چرخه آب در اکوسیستم جنگلی مورد مطالعه است.
مهدی حیات زاده، محمدرضا اختصاصی، حسین ملکی نژاد، علی فتح زاده، حمیدرضا عظیم زاده،
جلد 21، شماره 1 - ( 3-1396 )
چکیده
فرسایش خاک، بی شک یکی از مهمترین مسائل و مشکلات موجود در عرصه های طبیعی کشور است و آثار مخربی در اکوسیستم های مختلف به جای میگذارد. با توجه به اینکه محاسبه مقادیر رسوب از طریق ایستگاه های رسوب سنجی و اندازه گیری های مستقیم فرسایش فرایندی هزینه بر و مشکل است، یافتن روشهایی برای برآورد دقیق میزان رسوبدهی حوضه های آبخیز بویژه در مناطق خشک و فراخشک به دلیل شرایط حساس اکولوژیکی ضروری می نماید. یکی از روش هایی که تا به امروز در این مناطق نسبت به سایر روش های برآورد رسوب بیشتر مورد استفاده قرار گرفته است روش های رگرسیونی سنجه رسوب می باشد. لذا در این تحقیق مقادیر رسوب مشاهداتی 48 واقعه (دبی و رسوب متناظر) در یک دوره 23 ساله حوضه فخرآباد- مهریز با مقادیر برآوردی از روش های سنجه چند خطی، حد وسط دسته ها، منحنی سنجه حد وسط دسته ها با ضریب اصلاحی QMLE، SMEARING و ضریب اصلاحی FAO و همچنین با نتایج حاصل از روش شبکه عصبی مصنوعی (ANN) مورد مقایسه قرار گرفته و صحت هر یک از این روشها مورد آزمون قرار گرفت. بررسی حاصل از آزمون های مجذور میانگین مربع خطا ها (RMSE)، ضریب تبیین (R2) و معیار ناش (ME) کارایی بالاتر روش شبکه عصبی (ANN) را نسبت به سایر روش های مذکور نشان دادند. نتایج آزمون های مذکور برای روش شبکه عصبی مصنوعی به عنوان روش بهینه به ترتیب 3/203، 86/0 و 66/0 را نشان دادند. نتایج حاصل مبین این است که در استفاده از هر روشی برای برآورد رسوب معلق جریان در مناطق خشک و فراخشک به دلیل ماهیت داده های مشاهداتی و همچنین رژیم خاص جریان ها که اغلب به صورت موقت و فصلی می باشند باید جانب احتیاط را رعایت نمود. در عین حال بررسی نتایج این تحقیق گویای انعطافپذیری بالاتر مدل های شبکه عصبی مصنوعی است که آنها را به ابزار مناسبی جهت مدلسازی در شرایطی که با فقر داده مواجه هستیم مبدل می سازد.
حامد ادب،
جلد 21، شماره 2 - ( 5-1396 )
چکیده
تعداد محدودی از ایستگاههای هواشناسی کشاورزی در کشور به اندازهگیری رطوبت سطح خاک میپردازند همچنین ممکن است در مناطق فاقد ایستگاه نیاز اساسی به اطلاعات رطوبت سطح خاک باشد. هدف پژوهش حاضر، استفاده از دادههای ماهواره لندست 8 جهت برآورد رطوبت سطح خاک در منطقه فاقد ایستگاه هواشناسی کشاورزی است. رطوبت وزنی 14 نمونه خاک در فصل سرد از عمق صفر تا 10 سانتیمتری همزمان با عبور لندست 8 از مراتع طبیعی فقیر شمال شهر سبزوار محاسبه گردید. براساس تحلیل مؤلفه اصلی، چهار مؤلفه اول از هفت شاخص پوشش گیاهی و بیو- فیزیکی مؤثر بر رطوبت سطح خاک از دادههای لندست 8 استخراج شد. سپس رطوبت سطح خاک در لحظه عبور ماهواره با استفاده از چهار مؤلفه اول با روشهای رگرسیون خطی چند متغیره و شبکه عصبی برآورد شد. نتایج برآورد رطوبت لحظهای سطح خاک نشان داد که متوسط درصد خطای مطلق با روش شبکه عصبی 30 درصد خطا و در روش رگرسیون کلاسیک با 40 درصد خطا همراه بود. نتایج تحقیق در دوره مورد مطالعه نشان میدهد که مدل کردن رطوبت لحظهای خاک با استفاده از اندازهگیریهای زمینی و دادههای ماهواره لندست 8 در مناطق فاقد ایستگاه هواشناسی کشاورزی قابل انجام است.